17 research outputs found

    Determination of Membrane Protein Transporter Oligomerization in Native Tissue Using Spatial Fluorescence Intensity Fluctuation Analysis

    Get PDF
    Membrane transporter proteins exist in a complex dynamic equilibrium between various oligomeric states that include monomers, dimers, dimer of dimers and higher order oligomers. Given their sub-optical microscopic resolution size, the oligomerization state of membrane transporters is difficult to quantify without requiring tissue disruption and indirect biochemical methods. Here we present the application of a fluorescence measurement technique which combines fluorescence image moment analysis and spatial intensity distribution analysis (SpIDA) to determine the oligomerization state of membrane proteins in situ. As a model system we analyzed the oligomeric state(s) of the electrogenic sodium bicarbonate cotransporter NBCe1-A in cultured cells and in rat kidney. The approaches that we describe offer for the first time the ability to investigate the oligomeric state of membrane transporter proteins in their native state

    Diffusion Coefficients of Humic Substances in Agarose Gel and in Water

    No full text

    High-Throughput and Label-Free Single Nanoparticle Sizing Based on Time-Resolved On-Chip Microscopy

    No full text
    Sizing individual nanoparticles and dispersions of nanoparticles provides invaluable information in applications such as nanomaterial synthesis, air and water quality monitoring, virology, and medical diagnostics. Several conventional nanoparticle sizing approaches exist; however, there remains a lack of high-throughput approaches that are suitable for low-resource and field settings, <i>i.e.</i>, methods that are cost-effective, portable, and can measure widely varying particle sizes and concentrations. Here we fill this gap using an unconventional approach that combines holographic on-chip microscopy with vapor-condensed nanolens self-assembly inside a cost-effective hand-held device. By using this approach and capturing time-resolved <i>in situ</i> images of the particles, we optimize the nanolens formation process, resulting in significant signal enhancement for the label-free detection and sizing of individual deeply subwavelength particles (smaller than λ/10) over a 30 mm<sup>2</sup> sample field-of-view, with an accuracy of ±11 nm. These time-resolved measurements are significantly more reliable than a single measurement at a given time, which was previously used only for nanoparticle detection without sizing. We experimentally demonstrate the sizing of individual nanoparticles as well as viruses, monodisperse samples, and complex polydisperse mixtures, where the sample concentrations can span ∼5 orders-of-magnitude and particle sizes can range from 40 nm to millimeter-scale. We believe that this high-throughput and label-free nanoparticle sizing platform, together with its cost-effective and hand-held interface, will make highly advanced nanoscopic measurements readily accessible to researchers in developing countries and even to citizen-scientists, and might especially be valuable for environmental and biomedical applications as well as for higher education and training programs
    corecore