251 research outputs found

    Proximity to Fermi-surface topological change in superconducting LaO0.54F0.46BiS2

    Get PDF
    The electronic structure of nearly optimally-doped novel superconductor LaO1βˆ’x_{1-x}Fx_xBiS2_2 (x{\it x} = 0.46) was investigated using angle-resolved photoemission spectroscopy (ARPES). We clearly observed band dispersions from 2 to 6 eV binding energy and near the Fermi level (EF{\it E}_{\rm F}), which are well reproduced by first principles calculations when the spin-orbit coupling is taken into account. The ARPES intensity map near EF{\it E}_{\rm F} shows a square-like distribution around the Ξ“\Gamma(Z) point in addition to electronlike Fermi surface (FS) sheets around the X(R) point, indicating that FS of LaO0.54_{0.54}F0.46_{0.46}BiS2_2 is in close proximity to the theoretically-predicted topological change.Comment: 6 pages, 3 figures, + supplemental materia

    The impact of molecular profile on the lymphatic spread pattern in stage III colon cancer

    Get PDF
    The anatomical spread of lymph node (LN) metastasis is of practical importance in the surgical management of colon cancer (CC). We examined the effect of KRAS, BRAF, and microsatellite instability (MSI) on LN count and anatomical spread pattern in stage III CC. We determined KRAS, BRAF, and MSI status from stage III CC patients. Biomarker status was correlated with LN count and anatomical spread pattern, which was classified as sequential or skipped. Relapse-free survival (RFS) was estimated using Kaplan-Meier method, and correlations were assessed using log-rank and Cox regression analyses. We analyzed 369 stage III CC patients. The proportion of KRAS mutant (mt), BRAF mt, and MSI-high (H) were 44.2% (163/344), 6.8% (25/344), and 6.8% (25/344), respectively. The mean number of metastatic LN was higher in microsatellite-stable (MSS) compared with MSI patients (3.5 vs. 2.7, P = .0406), although no differences were observed in accordance with KRAS or BRAF status. Interestingly, patients with BRAF mt and MSI-H were less likely to harbor skipped metastatic LN (9.3% vs 20% and 4% vs 10.5% compared with BRAF wild-type (wt) and MSS, respectively), but KRAS status did not predict anatomical spread pattern. Patients with KRAS wt and MSI-H showed superior RFS compared with KRAS mt and MSS patients, respectively, whereas BRAF status did not affect RFS. Differences exist in the anatomical pattern of invaded LN in accordance with the molecular status of stage III CC. Patients with MSI-H CC have less invaded and skipped LN, suggesting that a tailored surgical approach is possible

    SHED Repair Critical-Size Calvarial Defects in Mice

    Get PDF
    OBJECTIVE Stem cells from human exfoliated deciduous teeth (SHED) are a population of highly proliferative postnatal stem cells capable of differentiating into odontoblasts, adipocytes, neural cells, and osteo-inductive cells. To examine whether SHED-mediated bone regeneration can be utilized for therapeutic purposes, we used SHED to repair critical-size calvarial defects in immuno-compromised mice. MATERIALS AND METHODS We generated calvarial defects and transplanted SHED with hydroxyapatite/ tricalcium phosphate as a carrier into the defect areas. RESULTS SHED were able to repair the defects with substantial bone formation. Interestingly, SHED-mediated osteogenesis failed to recruit hematopoietic marrow elements that are commonly seen in bone marrow mesenchymal stem cell-generated bone. Furthermore, SHED were found to co-express mesenchymal stem cell marker, CC9/MUC18/CD146, with an array of growth factor receptors such as transforming growth factor Ξ² receptor I and II, fibroblast growth factor receptor I and III, and vascular endothelial growth factor receptor I, implying their comprehensive differentiation potential. CONCLUSIONS Our data indicate that SHED, derived from neural crest cells, may select unique mechanisms to exert osteogenesis. SHED might be a suitable resource for orofacial bone regeneration

    Optical cavity with a double-layered cholesteric liquid crystal mirror and its prospective application to solid state laser

    Get PDF
    The authors have fabricated an optical cavity with silver (Ag) and double-layered cholesteric liquid crystal (CLC) mirrors facing each other. This CLC mirror consists of left-handed CLC and right-handed CLC films for high light reflection irrespective of polarization states. A single-mode lasing was observed in dye-doped CLC sandwiched between Ag and double-layered CLC mirrors. The authors also fabricated a flexible solid state device with a spin-coated dye molecular film sandwiched between Ag and double-layered CLC mirrors. Amplified spontaneous emission was observed from the solid state device, suggesting a possible structure for a flexible and tunable solid state laser.open

    miRNA-720 Controls Stem Cell Phenotype, Proliferation and Differentiation of Human Dental Pulp Cells

    Get PDF
    Dental pulp cells (DPCs) are known to be enriched in stem/progenitor cells but not well characterized yet. Small non-coding microRNAs (miRNAs) have been identified to control protein translation, mRNA stability and transcription, and have been reported to play important roles in stem cell biology, related to cell reprogramming, maintenance of stemness and regulation of cell differentiation. In order to characterize dental pulp stem/progenitor cells and its mechanism of differentiation, we herein sorted stem-cell-enriched side population (SP) cells from human DPCs and periodontal ligament cells (PDLCs), and performed a locked nucleic acid (LNA)-based miRNA array. As a result, miR-720 was highly expressed in the differentiated main population (MP) cells compared to that in SP cells. In silico analysis and a reporter assay showed that miR-720 targets the stem cell marker NANOG, indicating that miR-720 could promote differentiation of dental pulp stem/progenitor cells by repressing NANOG. Indeed, gain-and loss-of-function analyses showed that miR-720 controls NANOG transcript and protein levels. Moreover, transfection of miR-720 significantly decreased the number of cells positive for the early stem cell marker SSEA-4. Concomitantly, mRNA levels of DNA methyltransferases (DNMTs), which are known to play crucial factors during stem cell differentiation, were also increased by miR-720 through unknown mechanism. Finally, miR-720 decreased DPC proliferation as determined by immunocytochemical analysis against ki-67, and promoted odontogenic differentiation as demonstrated by alizarin red staining, as well as alkaline phosphatase and osteopontin mRNA levels. Our findings identify miR-720 as a novel miRNA regulating the differentiation of DPCs

    Exposure to Candida albicans Polarizes a T-Cell Driven Arthritis Model towards Th17 Responses, Resulting in a More Destructive Arthritis

    Get PDF
    BACKGROUND: Fungal components have been shown very effective in generating Th17 responses. We investigated whether exposure to a minute amount of C. albicans in the arthritic joint altered the local cytokine environment, leading to enhanced Th17 expansion and resulting in a more destructive arthritis. METHODOLOGY: Chronic SCW arthritis was induced by repeated injection with Streptococcus pyogenes (SCW) cell wall fragments into the knee joint of C57Bl/6 mice, alone or in combination with the yeast of C. albicans or Zymosan A. During the chronic phase of the arthritis, the cytokine levels, mRNA expression and histopathological analysis of the joints were performed. To investigate the phenotype of the IL-17 producing T-cells, synovial cells were isolated and analyzed by flowcytometry. PRINCIPAL FINDINGS: Intra-articular injection of either Zymosan A or C. albicans on top of the SCW injection both resulted in enhanced joint swelling and inflammation compared to the normal SCW group. However, only the addition of C. albicans during SCW arthritis resulted in severe chondrocyte death and enhanced destruction of cartilage and bone. Additionally, exposure to C. albicans led to increased IL-17 in the arthritic joint, which was accompanied by an increased synovial mRNA expression of T-bet and RORgammaT. Moreover, the C. albicans-injected mice had significantly more Th17 cells in the synovium, of which a large population also produced IFN-gamma. CONCLUSION: This study clearly shows that minute amounts of fungal components, like C. albicans, are very potent in interfering with the local cytokine environment in an arthritic joint, thereby polarizing arthritis towards a more destructive phenotype
    • …
    corecore