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Abstract

Dental pulp cells (DPCs) are known to be enriched in stem/progenitor cells but not well characterized yet. Small non-coding
microRNAs (miRNAs) have been identified to control protein translation, mRNA stability and transcription, and have been
reported to play important roles in stem cell biology, related to cell reprogramming, maintenance of stemness and
regulation of cell differentiation. In order to characterize dental pulp stem/progenitor cells and its mechanism of
differentiation, we herein sorted stem-cell-enriched side population (SP) cells from human DPCs and periodontal ligament
cells (PDLCs), and performed a locked nucleic acid (LNA)-based miRNA array. As a result, miR-720 was highly expressed in
the differentiated main population (MP) cells compared to that in SP cells. In silico analysis and a reporter assay showed that
miR-720 targets the stem cell marker NANOG, indicating that miR-720 could promote differentiation of dental pulp stem/
progenitor cells by repressing NANOG. Indeed, gain-and loss-of-function analyses showed that miR-720 controls NANOG
transcript and protein levels. Moreover, transfection of miR-720 significantly decreased the number of cells positive for the
early stem cell marker SSEA-4. Concomitantly, mRNA levels of DNA methyltransferases (DNMTs), which are known to play
crucial factors during stem cell differentiation, were also increased by miR-720 through unknown mechanism. Finally, miR-
720 decreased DPC proliferation as determined by immunocytochemical analysis against ki-67, and promoted odontogenic
differentiation as demonstrated by alizarin red staining, as well as alkaline phosphatase and osteopontin mRNA levels. Our
findings identify miR-720 as a novel miRNA regulating the differentiation of DPCs.
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Introduction

Stem cells are undifferentiated cells characterized by their

ability for self-renewing division as well as by their capacity into

differentiate to other cell types [1,2]. The identification and

characterization of adult stem cells in various tissues has led to a

greater understanding of development, tissue maintenance and

self-renewal. Deeper understanding of the biology of stem cells

would offer great promise in the field of regenerative medicine.

MicroRNAs (miRNAs) have emerged as important regulators of

stem cell maintenance and function [3,4]. miRNAs are a class of

small noncoding RNAs of approximately 17 to 25 nucleotides that

mainly regulate protein translation by recognizing the 39-

untranslated region (UTR) of their target mRNAs [5,6,7,8]. Some

miRNAs are expressed in tissue-specific and/or developmentally

regulated manners, and are crucial for maintaining the balance

between proliferation and differentiation during development.

Following studies showing that a set of transcription factors

induces pluripotent stem cells [9], transfection of mature miRNAs

has also been reported to reprogram differentiated fibroblasts to

pluripotency [10,11]. In addition, previous studies have demon-

strated the involvement of miRNAs (e.g., miR-30d, miR-138,

miR-155, miR-18a) in the process of osteogenic or adipogenic

differentiation of bone marrow stem/progenitor cells (BMSCs)

[12,13,14]. Therefore, miRNAs play important roles in the

determination of stem cell fate.

In this study, we have attempted to identify a miRNA signature

involved in regulating the maintenance of stem cell phenotype or

differentiation ability of dental tissue-derived stem/progenitor

cells. Our hypothesis is that stem cells can be regulated by specific

miRNAs that orchestrate the translation of mRNAs related to cell

differentiation or the maintenance of stem cell phenotype [15]. A

main drawback in such studies, however, is related to the absence

of a specific marker for isolation of stem cells from adult

mesenchymal tissues. In order to overcome such hindrance, we

have based our strategy on the properties of stem cells to efflux

Hoechst-33342 dye through ATP binding cassette (ABC) trans-

porters [16,17]. Such cells have been described as side population

(SP) cells and are enriched in stem cells [17,18]. We thus have

sorted SP cells and main population (MP) cells from dental pulp

cells (DPCs) as well as periodontal ligament cells (PDLCs) by

fluorescence-activated cell sorting (FACS), and then performed a
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miRNA array analysis. Subsequent experiments revealed that

miR-720 directly control the levels of NANOG, a key transcrip-

tion factor and marker of stem cells, and differentiation of DPCs.

Materials and Methods

2.1. Cells
DPCs and PDLCs were isolated from third molars or pre-

molars extracted from at least 4 adults under the approved

guidelines and protocol (Okayama University Ethics Committee

#418) with written informed consent obtained from all subjects.

The isolation and cultivation of human DPCs and PDLCs were

performed according to a previously reported method [19,20].

Cells were cultured in a-Modified Essential Medium (a-MEM,

Life TechnologiesTM,Carlsbad,CA, USA) supplemented with 15%

fetal bovine serum (FBS; Life TechnologiesTM), 100 mM L-

ascorbic acid 2-phosphate (Wako Pure Chemical Industries,

Osaka, Japan), 2 mM L-glutamine (Life TechnologiesTM), 100

units/ml penicillin (Sigma, St Louis, MO, USA) and 100 mg/ml of

streptomycin (Sigma) at 37uC under 5% CO2 in air.

HeLa cells were cultured in high glucose Dulbecco’s Modified

Eagle Medium (DMEM, Life TechnologiesTM) supplemented with

1% antibiotics and 10% FBS.

2.2. Flow cytometry (FCM) and Fluorescence-activated
cell sorting (FACS)

DPCs and PDLCs were dissociated with accutase (Innovative

Cell Technologies Inc., San Diego, CA, USA) and filtered through

a 70-mm cell strainer, washed with phosphate buffer saline (PBS),

resuspended in 1% FBS/PBS, and incubated with antibodies

against human SSEA-4, CD29, CD34, CD44, CD45 and CD146

(BD Biosciences, San Jose, CA, USA) for 30 min on ice. Cells were

then washed, and subjected to a FCM analysis by MACSQuantH
Analyzer (Miltenyi Biotec, Bergisch Gladbach, Germany) or

AccuriTM C6 (BD Biosciences). Gating of positive cells was

established as the histogram gate giving 1% of positive cells using

the corresponding isotype control.

For cell sorting, approximately 16108 DPCs or PDLCs were

dissociated with accutase and stained with Hoechst-33342 (5 mg/

mL, Sigma) according to a previously described protocol [17].

Verapamil (100 mM, Sigma) was used to inhibit the efflux of the

dye by ABCG2 transporters and for gating of SP cells. Stained

cells were analyzed and sorted on a cell sorter (FACSAriaTM II,

BD Biosciences) by a 375 nm near ultra-violet laser and detected

by Hoechst red (675 nm Long pass) and Hoechst blue (430–

470 nm) filters. Sorted cells were immediately frozen at 280uC for

subsequent RNA isolation for the miRNA array, or aliquoted in a

small quantity for subsequent colony forming unit-fibroblast

(CFU-F) assay.

2.3. Colony forming unit assay
CFU-F assay was performed by seeding 100 cells in a 25-cm2

culture flasks and culturing for 2 weeks. Cells were then washed

with PBS and stained with 0.1% toluidine blue contained in 1%

PFA overnight. On the following day, cells were washed to remove

excess dye. Stained clusters containing more than 50 cells were

counted as positive colonies.

2.4. MicroRNA array
A miRNA array was performed with total RNA collected with

RNAzol RT (Molecular Research Center, OH, USA) from single

samples of SP and MP cells sorted from both DPCs and PDLCs on

a locked nucleic acid (LNA) platform (miRCURY LNATM

microRNA Array, Exiqon Life Sciences, Vedbaek, Denmark). A

total of 250 ng of total RNA from MP cells was used for

microRNA array. In the case of SP cells, since there was not

satisfactory amount of RNA due to the extremely low number of

sorted cells (0.1%), a total of 3 mL was applied for the array. RNA

isolation, array and clustering analyses were performed by the

manufacturer. Briefly, array protocol consisted of sample labeling

with Hy3 fluorescent label, purification with 3 M NaOAc and

isopropanol, hybridization, wash, scan and data analysis. Average

of signal intensity in 4 repeated spots in the array was considered

as the final data for each probe. Probes with a percent coefficient

of variation (%CV, standard deviation/mean6100) above 50%

were excluded. Raw data can be accessed at gene expression

omnibus (GEO) database (accession number GSE47025).

Hierarchical clustering was performed by average linkage

measurement and Pearson’s correlation metric in the freely-

available, open-source MeV software tool available from http://

www.tm4.org/mev/. A comparative analysis of miRNA expres-

sion profile between SP cells or MP cells from DPCs and PDLCs

was performed in order to investigate the effects of isolation lots

and concentrations of RNA. Additionally, analysis of gene

expression levels of ABCG2 transporter and the stem cell markers

NANOG and OCT-4 between SP and MP cells was performed

using residual RNA.

Table 1. List of primer pairs used for real time RT-PCR
analysis.

Gene name
(accession #) Direction Nucleotide Sequence

S29 (BC032813) Sense 59-TCTCGCTCTTGTCGTGTCTGTTC-39

Anti-sense 59-ACACTGGCGGCACATATTGAGG-
39

NANOG (NM_024865.2) Sense 59-GCCTTCACACCATTGCTAT-39

Anti-sense 59-TCTCCAACATCCTGAACCT-39

OCT-4
(NM_001159542.1)

Sense 59-GAAAGGGACCGAGGAGTA-39

Anti-sense 59-CCGAGTGTGGTTCTGTAAC-39

ALP (NM_000478) Sense 59- GCACCGCCACCGCCTACC-39

Anti-sense 59- CCACAGATTTCCCAGCGTCCTTG-
39

OPN (BC007016) Sense 59- ATGTGATTGATAGTCAGGAACTT-
39

Anti-sense 59- GTCTACAACCAGCATATCTTCA-39

ABCG2
(NM_001257386.1)

Sense 59-
CATTCAAGAGTTAGGTCTGGATAA-39

Anti-sense 59- CCAAGAACAAGATGGAAGGAT-39

DNMT3A (NM_175629.2) Sense 59-GCAGCCATTAAGGAAGAC-39

Anti-sense 59-TGGTTATTAGCGAAGAACATC-39

DNMT3B (NM_006892.3) Sense 59-TTACCTTACCATCGACCTCACA-39

Anti-sense 59-CTGTCTCCATCTCCACTGTCT-39

DNMT1 (NM_001379.2) Sense 59-CCATCAGGCATTCTACCA-39

Anti-sense 59-CGTTCTCCTTGTCTTCTCT-39

miR-720 59-TCTCGCTGGGGCCTCCA-39

doi:10.1371/journal.pone.0083545.t001

miR-720 Controls Dental Pulp Cell Differentiation
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Figure 1. Sorting and characterization of MP and SP cells from DPCs. A) Identification and sorting of side population (SP) and main
population (MP) by FACS using Hoechst-33342 (5 mg/mL) and verapamil (100 mM) as an inhibitor of ABCG2 binding cassette. B) Quantitative analysis
of colony forming ability (CFU-F assay) of SP and MP cells. Results are the mean (6S.E.M.) of quadruplicate samples. C–D) mRNA levels of ABCG2,
NANOG and OCT-4 in SP and MP cells. Results are the average (6SD) of a single experiment run in triplicate. * P,0.05, ** P,0.01, *** P,0.001,
unpaired t-test, compared to MP.
doi:10.1371/journal.pone.0083545.g001

Figure 2. miRNA expression signature in DPCs and in periodontal ligament-derived cells (PDLCs). A) Clustering analysis of SP and MP
cells from DPCs and PDLCs. B) A comparative scatter plot analysis of miRNA profiles in MP from DPCs and PDLCs. C) A comparative scatter plot
analysis of miRNA profiles in SP from DPCs and PDLCs. Red line shows variations of 2 fold (upper line) and 1/2 fold (lower line) change. D)
Quantification of miR-720 expression level in sorted MP and SP cells. Results are the average (6SD) of a single experiment run in triplicate. ***
P,0.001, unpaired t-test, compared to MP.
doi:10.1371/journal.pone.0083545.g002
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2.5. Reverse transcription and real-time reverse
transcription-polymerase chain reaction (RT-PCR)

Total RNA from DPC cultures was extracted with miRNeasy

(Qiagen, Hilden, Germany) and purified by removing genomic

DNA with RNase-Free DNase set (Qiagen), as described

previously [14,21]. Primer sequences are shown in Table 1. Gene

expression levels were normalized to that of ribosomal protein

S29.

For analysis of miRNA levels, complementary DNAs were

obtained using a miR-X miRNA First-Strand Synthesis Kit

(Clontech, Mountain View, CA, USA) from 1 mg of total RNA,

according to the manufacturer’s instructions. Expression levels of

miRNAs were quantified by real-time RT-PCR using SYBR green

(Clontech) and normalized to that of the internal control U6.

2.6. In silico target prediction
Targets of the selected miRNAs were predicted by utilizing

miRDB software (http://mirdb.org/miRDB). Possible comple-

mentary sequences of miR-720 in NANOG mRNA sequence were

searched using RegRNA software (http://regrna.mbc.nctu.edu.

tw/html/prediction.html) [22].

2.7. Reporter plasmid constructs
For target validation, the reporter gene construct containing 3

tandem copies of the in silico-determined miR-720 predicted target

site in NANOG 39-UTR was constructed by inserting the

corresponding synthetic oligodeoxynucleotides between the

XbaI-EcoRI restriction sites at the 39-UTR of luciferase in a

recipient pGL3L(+) reporter vector [23]. Additional oligodeox-

ynucleotides containing mutations in NANOG 39-UTR seed

sequence were designed, synthesized and also inserted into the

reporter vector. Designed oligonucleotides sequences of the

predicted sites are shown in Table S3. Final vector constructs

were verified by DNA sequencing before transfection into HeLa

cells.

2.8. Transient transfections
DPCs were transfected with hsa-miR-720 Mimic (mirVanaH,

Life TechnologiesTM), miRNA Mimic Negative Control #1

(mirVanaTM, Life TechnologiesTM), miR-720 inhibitor (mirVanaH,

Life TechnologiesTM) or miRNA Inhibitor Negative Control #1

(mirVanaTM, Life TechnologiesTM) using LipofectamineH RNAi-

MAX (Life TechnologiesTM) transfection reagent, according to the

manufacturer’s instructions. Inhibitors and mimics were used at a

concentration of 20 nM. Cells were collected 24 h after transfec-

tion for further analysis of mRNA or miRNA levels.

Transfection of luciferase reporter plasmids into HeLa cells was

performed with LipofectamineH 2000 (Life TechnologiesTM),

according to manufacturer’s protocol. DNMT3a and DNMT3b

overexpression vectors, which were kind gifts from Dr. Stephen B.

Baylin, were also transfected with LipofectamineH 2000 into

DPCs.

For co-transfection of miRNA and effector plasmid constructs,

cells were first transfected with anti-miR-720 and cultured for

24 h. Subsequently, medium was changed and cells were

transfected with the constructs and cultured for another 24 h

before analyses.

2.9 Luciferase assay
HeLa cells were seeded in white opaque 96-well plates,

transfected with luciferase reporter constructs and cultured for

8 h. Next, medium was changed, and cells were transfected with

mimic-miR-720 and cultured for additional 24 h before assay.

Luciferase assay was performed using Bright-GloTM Luciferase

Assay System (Promega), according to manufacturer’s instruction.

2.10. Imaging and quantitative immunocytochemical
analysis

DPCs were seeded in 96-well plates, transfected with anti-miR-

720, mimic-miR-720 or the respective negative controls, and

cultured for 24 h. Immunocytochemical analyses were performed

according to methods described previously [21], using primary

antibodies against DNMT1 [24,25], DNMT3A [26], DNMT3B

(Imgenex Corporation, San Diego, CA, USA), NANOG (Repro-

CELL, Boston, MA, USA) or isotype control IgG. Cell proliferation

was determined by the number of cells positive for the proliferation

marker ki-67 using anti-human ki-67 antibody (Abcam, Cambridge,

UK), as previously reported [21]. Alexa FluorH 488-conjugated

antibody (Life TechnologiesTM) was utilized as secondary antibody.

Cell nuclei were stained with 49 6-diamidino-2-phenylindole (DAPI,

Life TechnologiesTM). Images of the cells were acquired and

quantitatively analyzed using an automated fluorescence imaging

system (Cellomics ArrayScanTM VTI high content screening

reader, Thermo Scientific, Waltham, MA, USA).

2.11. Analysis of odontogenic differentiation in vitro
DPCs were seeded in 24-well plates, and transfected with anti-

miR-720, mimic-miR-720 or the respective negative controls, and

cultured until confluency. Cells were then induced to differentiate

Table 2. In silico target prediction analysis of the 6 most
highly expressed miRNAs in MP cells.

Name Predicted targets

1 miR-1260b DNMT3A, HOXD1, OCT1, FGF12, GDF11

2 miR-720 DNMT3A, NANOG

3 miR-1280 JAG2, ZNF544, UBTF

4 miR-491-3p EGFR, SOX-11, COL12A1, NOV/CCN3

5 miR-1260a DNMT3A, PDGFD, HOXD1, SEMA3A, FGF12

6 miR-138-1 TIEG2, JMJD1C, CYCLIN D3, ROCK2, PPARd

Table shows the selected possible mRNA targets related to stemness and cell
differentiation.
doi:10.1371/journal.pone.0083545.t002

Table 3. In silico target prediction analysis of the 6 most
highly expressed miRNAs in SP cells.

Name Predicted targets (miRDB)

1 miR-200b ZEB1, ZEB2, BMI1, TWISTNB, PLEXINA4, DNMT3A,
CDNK2B

2 miR-607 RUNX-1, RUNX-2, IGF-1, MSX1, SOCS4, CXCL6

3 miR-515-5p FGFR2, TGFBR2, NOTCH2, BMP8b, MSX2, FGF12,
BMPR1B

4 miR-1245 FGF20, TBRG1, BMI1

5 miR-3919 NFAT5, ID4, HOXB13, HDAC1, RPS6KA6, TGFBR2,
SEMA3A

6 miR-182 FGF9, SMAD1, IGF1R, SOX2, BMPR1B, WISP1/
CCN4, EGR3

Table shows the selected possible mRNA targets related to stemness and cell
differentiation.
doi:10.1371/journal.pone.0083545.t003

miR-720 Controls Dental Pulp Cell Differentiation
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toward odontogenic lineage under odontogenic-inducing medium,

as previously described [14].

Alkaline phosphatase staining was performed with nitro-blue

tetrazolium and 5-bromo-4-chloro-39-indolyphosphate (NBT-

BCIP, Roche, Basel, Switzerland), and alizarin red staining for

Ca+ deposition was performed with 1% Alizarin red S (Sigma)

solution (pH 6.4), as described previously [14].

2.12. Statistical analysis
Statistical analyses were performed by unpaired Student’s t-test

or one-way ANOVA followed by Tukey post-hoc correction tests

when appropriate.

Results

3.1. Characterization, sorting of DPCs and PDLCs, and
microRNA analysis

Firstly, in order to characterize the whole population of DPCs,

the expression of stem cell surface markers was analyzed by FCM.

As a result, DPCs were shown to be positive for mesenchymal stem

cell markers SSEA-4 [27], CD146 [28] and CD44 [29], and

negative for hematopoietic stem cell markers CD24, CD34 and

CD45 (Fig. S1). Next, DPCs were sorted in order to isolate MP

and SP cells, which corresponded to only a small fraction of 0.1%

of the total number of sorted cells (Fig. 1A). The results of CFU-F

assay using sorted MP and SP cells demonstrated a higher capacity

of SP cells to form colonies (Fig. 1B). In addition, using residual

RNA that remained after the array, we analyzed the expression

levels of the ABCG2 transporter. As expected, SP cells showed a

significantly higher expression of the ABCG2 transporter, a

finding which is consistent with the higher capacity of the cells to

efflux Hoechst dye (Fig. 1C). Additionally, since the SP cohort is

known to be enriched in stem cells, we also investigated and

confirmed the higher expression levels of two stem cell markers,

NANOG and OCT-4 in SP cells (Fig. 1D). Taken together, these

data demonstrate that the SP of DPCs presents higher stem cell

properties than MP cells.

Figure 3. Effects of mimic-miR-720 on stem cell phenotype of DPCs. A) Quantitative assessment of miR-720 levels. *** P,0.001, One way
ANOVA/Tukey. Results are representative of at least 3 independent experiments. B) mimic-miR-720 reduced mRNA levels of NANOG, but increased the
levels of DNMT3B and DNMT1 mRNA. No significant changes were observed in DNMT3A mRNA upon miR-720 transfection. * P,0.05, ** P,0.01, NS =
non-significant, unpaired t-test, compared to si-control group. Results are representative of at least 3 independent experiments. C) Representative
images of immunocytochemistry for NANOG protein levels. D) Quantitative analysis of NANOG or DNMTs positive cells. Mimic-miR-720 significantly
reduced the number of NANOG positive cells, while increasing those for DNMT3B. There was no significant change in the percentages of DNMT1 or
DNMT3A positive cells. Results in C–D are representative of at least 3 independent experiments. Quantitative analysis was performed on 500 cells/
well, with at least triplicate samples. * P,0.05, ** P,0.01, NS = non-significant, unpaired t-test, compared to si-control group. G) Transfection of
mimic-miR-720 decreased the percentage of SSEA-4+ cells. Results are representative of 3 independent experiments.
doi:10.1371/journal.pone.0083545.g003

miR-720 Controls Dental Pulp Cell Differentiation
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We next carried out miRNA expression profiling on DPCs and

PDLCs. Interestingly, the results of the clustering analysis of the

miRNA array revealed a similar profile between DPCs and

PDLCs (Fig. 2A). Additionally, comparative analysis of miRNA

expression profiles between the MP cells or SP cells of DPCs and

PDLCs also showed that the sorted cell populations presented a

good consistency between DPCs and PDLCs, which strengthen

the reproducibility of the methods and results (Fig. 2B and 2C). A

high reproducibility was observed in MP cells between the two cell

types (Fig. 2B); however, since the amount of collected SP cells was

extremely low, the total amount of RNA isolated was not enough

to enable more consistent results between SP cells from DPCs and

PDLCs. Therefore, additional normalization (with 75% tiling) was

performed in order to minimize effects which were not due to the

controlled factors in the experiment.

The complete list of miRNAs differentially expressed in MP and

SP cells is presented in Table S1 and S2, respectively. Among the

whole miRNA profile, miR-1260b and miR-720 were the two

most highly expressed miRNAs in MP cells, whereas miR-200b

and miR-607 were highly expressed in SP cells.

3.2. Target prediction and confirmation of array data
We next investigated the predicted targets in silico of the 6 most

highly expressed miRNAs in MP and SP cells as shown in Table 2

and 3, respectively. Of particular interest, miR-720 was predicted

to target only 22 candidate genes, among which two genes has

been reported to play important roles in the biology of stem cells,

namely DNMT3A and NANOG. Before proceeding to further

experiments, we therefore analyzed the expression level of miR-

720 in MP and SP cells. As shown in Fig. 2D, expression of miR-

720 was lower in SP cells, suggesting that miR-720 could be

involved in the regulation of stemness and/or differentiation of

DPCs.

3.3. miR-720 controls the expression of stem cell markers
in DPCs

In order to address whether miR-720 can regulate the levels of

NANOG and DNMT3A, we performed gain- and loss-of-function

experiments on miR-720 and analyzed alterations in the levels of

the two potential target genes. In addition, we also analyzed the

expression levels of DNMT3B and DNMT1, as well as the

expression of the surface protein SSEA-4, which has been reported

to be a marker of stem/progenitor cells from dental pulp [27]. As

shown in Fig. 3, mimic-miR-720 in DPCs significantly decreased

the levels of NANOG mRNA, while increasing the expression levels

of DNMT3B and DNMT1 (Fig. 3B). However, minimal changes

were observed in the levels of DNMT3A mRNA. In agreement,

immunocytochemical analysis also showed a decrease in the

number of cells positive for NANOG (Fig. 3D). Consistent with a

decrease in the levels of NANOG, there was also a decrease in the

percentage of SSEA-4+ cells (Fig. 3G). On the other hand,

DNMT3B levels were significantly increased upon transfection of

mimic-miR-720 (Fig. 3D), whereas DNMT1 and DNMT3A

protein levels were not significantly changed.

We further proceeded to loss-of-function analysis, and we could

observe that miR-720 knockdown induced a significant increase in

the number of cells positive for NANOG (Fig. 4B, D), as well as in

the number of SSEA-4+ cells (Fig. 4C). Conversely, knockdown of

Figure 4. Effects of miR-720 blockade on stem cell phenotype of DPCs. A) Quantitative assessment of the knockdown efficiency of miR-720.
*** P,0.001, One way ANOVA/Tukey. Results are representative of at least 3 independent experiments. B) Knockdown of miR-720 increased the levels
of NANOG transcripts, but reduced significantly the levels of DNMT3A, DNMT3B and DNMT1 transcripts. * P,0.05, ** P,0.01, *** P,0.001, unpaired t-
test, compared to si-control group. Results are representative of at least 3 independent experiments. C) Knockdown of miR-720 increased the
percentage of cells positive for SSEA-4. Results are representative of 3 independent experiments. D) Quantitative immunocytochemical analysis of
NANOG, and DNMTs positive cells upon knockdown of miR-720. Anti-miR-720 increased the percentage of NANOG positive cells, but induced no
significant changes in the percentage of DNMTs positive cells. NS = non-significant, unpaired t-test, compared to si-control group. Results are
representative of at least 3 independent experiments. Quantitative analysis was performed on 500 cells/well, at least with triplicate samples.
doi:10.1371/journal.pone.0083545.g004

miR-720 Controls Dental Pulp Cell Differentiation
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miR-720 induced a significant decrease in DNMT3A, DNMT3B

and DNMT1, mRNA expression which however, did not

correspond to alterations at a protein level (Fig. 4B and 4D).

Taken together, these data demonstrated that miR-720 can

regulate the expression of stem cell markers in DPCs. On the other

hand, since increases in the levels of miR-720 correlated with those

of DNMTs, we ruled out the possibility of a direct regulation of

these genes by miR-720 through direct binding to their 39-UTR,

and proceeded with further target validation only with NANOG.

3.4. miR-720 recognizes NANOG 39-UTR
In an attempt to clarify the mechanisms involved in miR-720

regulation of NANOG, we performed an in silico search for

possible miR-720 recognition sequences in the NANOG 39-UTR,

identifying in the process a single putative target region (Fig. 5A).

In order to determine whether this putative miR-720 recognition

sequence was functional, we then designed and constructed a triple

tandem repeat of the sequence, and the mutants (mutant 1 and

mutant 2), and cloned into a luciferase reporter plasmid (Fig. 5A

and table S3). As shown in Fig. 5B, a significant decrease in

luciferase activity was observed with the wild type mir-720 site of

NANOG 39-UTR upon mimic-miR-720 transfection, whereas no

significant changes were observed with mutants. These results

clearly indicate that miR-720 can recognize the specific miR-720

site in the NANOG 39-UTR and that miR-720 can inhibit

translation and stability of NANOG transcripts.

3.5. Control of NANOG transcripts by miR-720 is partially
mediated by DNMT3A and DNMT3B

Based on previous reports that demonstrated that DNMT3A

and DNMT3B act as transcriptional repressors of Nanog and Oct-4

genes in embryonic stem (ES) cells [30], and that miR-720

increased DNMTs mRNA levels, we hypothesized that miR-720

could also control NANOG levels through an indirect mechanism

mediated by DNMTs. In order to clarify this hypothesis, we firstly

confirmed DNMT3A or DNMT3B overexpression upon plasmid

transfection into DPCs (Fig. 6A–B). We then analyzed whether

overload of DNMT3A or DNMT3B could repress NANOG gene

expression in DPCs, in a similar manner as reported in ES cells. As

expected, overexpression of DNMT3A or DNMT3B significantly

reduced NANOG mRNA levels without alterations in the levels of

miR-720 (Fig. 6C–D), which indicates that DNMT3A and

DNMT3B repress NANOG expression, through a mechanism

independent of miR-720. Finally, we performed co-transfection

experiments with anti-miR-720 and DNMTs overexpression

vectors, and observed that either DNMT3A or DNMT3B nullified

the induction of NANOG transcript by miR-720 knockdown

(Fig. 6E). Collectively, these results suggested that control of

NANOG by miR-720 is partly mediated by DNMT3A and

DNMT3B, which however work through a miR-720-independent

pathway.

3.6. miR-720 regulates differentiation and proliferation of
DPCs

In order to investigate the function of miR-720 on the

differentiation capacity of DPCs, we induced the cells to

differentiate along the odontogenic lineage upon transfection of

mimic-miR-720 or anti-miR-720. As shown in Fig. 7A and 7B,

mimic-miR-720 enhanced the differentiation of DPCs, as dem-

onstrated by ALP staining, alizarin red staining and mRNA levels

of ALP and OPN – mineralization markers. Conversely, as

expected, knockdown of miR-720 inhibited differentiation of

DPCs (Fig. 7C–D), which demonstrates that miR-720 regulates

the differentiation of DPCs.

Since DNMTs are known be crucial factors in embryonic stem

cell differentiation, we performed co-transfection experiments of

DNMTs and anti-miR-720 and assessed calcium deposition and

expression of osteogenic markers to investigate whether the

differentiation of DPCs induced by miR-720 could also be

mediated by DNMT3A and/or DNMT3B. Interestingly, as

shown in Fig. 7E–F, transfection of DNMT3A or DNMT3B

over-rescued the decrease in odontogenic differentiation of DPCs

caused by miR-720 knockdown, as demonstrated by alizarin red

staining and OPN mRNA levels.

Finally, we analyzed the potential effects of miR-720 on the

proliferation of DPCs by utilizing the cell proliferation marker ki-

67, which is not expressed in G0 phase. As shown in Fig. 8,

transfection of mimic-miR-720 increased the number of ki-67

positive cells (Fig. 8A, B), whereas miR-720 knockdown increased

the number of ki-67 negative DPCs, i.e., quiescent cells (Fig. 8C).

Co-transfection with anti-miR720 and/or DNMT3A or

DNMT3B showed that either DNMT3A or DNMT3B could

nullify the decreased proliferation of DPCs induced by miR-720

knockdown (Fig. 8D).

Figure 5. Identification of a miR-720 target site in NANOG
mRNA. A) In silico analysis of putative target region of miR-720 in the
mRNA sequence of NANOG, and mutations in the seed sequence of
NANOG 39-UTR. The target region indicates number from 59 end of the
mRNA. Bars indicate Watson-Crick base pairing. Dots indicate G–U non-
Watson-Crick base pairing. Mutations are shown in bold letters. B)
Validation of the putative miR-720 target site. A triple tandem repeat of
the putative miR-720 site or mutants were cloned into luciferase
reporter construct and assayed in HeLa cells. miR-720 significantly
decreased luciferase activity of the wild type reporter plasmid with the
miR-720 recognition site in NANOG 39-UTR, whereas no significant
difference was observed in the mutants. Results are mean (6 S.E.M.) of
3 independent experiments performed at least with quadruplicate
wells. *** P,0.001, NS = non-significant, unpaired t-test.
doi:10.1371/journal.pone.0083545.g005
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Taken together, these data demonstrate that miR-720 promotes

cell cycle arrest, and odontogenic differentiation of DPCs. In

addition, both DNMT3A and DNMT3B, which were also

induced by miR-720, were shown to play important roles in

promoting DPC differentiation through their intrinsic manner.

Discussion

Epigenetic control of the mechanisms that govern stem cell fate by

miRNAs has been regarded as a crucial component in stem cell

biology. Previous studies have shown reprogramming of somatic

cells to pluripotency by miRNAs alone (miR-200c, miR-302/miR-

367/miR-369). In this context, the miR-200 and miR-302 families

have been regarded as key factors in the maintenance and self-

renewal of ES cell pluripotent state. On the other hand, miRNAs

also control the differentiation of stem cells. Among several reported

miRNAs, miR-134 has been shown to regulate the differentiation of

murine ES cells to ectodermal lineages mainly by silencing Nanog and

Lrh1 [31]. miRNA-138 has also been reported to control osteogenic

differentiation of BMSCs in vitro and in vivo [13].

An attractive feature of this study was that the process of stem

cell isolation was based not on biomarkers of mesenchymal stem

cells, but rather on their biological function. The ability of stem

cells to efflux Hoechst 33342 has been demonstrated in a wide

range of stem cell populations, including hematopoietic stem cells

[32], cancer stem cells [33] or adult stem cells (including DPCs)

[34]. In this study, we performed a miRNA array analysis on two

different cell populations (DPCs and PDLCs), and despite the

differences in their stem cell characteristics, we obtained similar

miRNA signatures for each cell. Additionally, the results of the

miRNA array showed that previously known miRNAs involved in

pluripotency such as miR-302 and miR200c families were more

highly expressed in SP cells (Table S2). On the other hand,

miRNAs involved in the regulation of stem cell differentiation such

as miR-138 and let-7 family RNAs were highly expressed in MP

cells. Other studies based on the same strategy of SP cell sorting

for isolation of stem cells have identified a set of miRNAs that

regulate the stemness and differentiation of SP cells. For instance,

miR-128a was highly expressed in SP cells, but its expression was

decreased during differentiation of muscle SP cells [35]. Another

study identified miR-328 in the SP of colorectal cancer cells and

demonstrated that expression of miR-328 correlated with high a

SP fraction, and that the main targets of miR-328 were the ABCG2

transporter and the MMP16 gene [36]. Finally, let-7 was found to

be significantly down-regulated in SP cells, and decreased levels of

let-7 were shown to promote SP cell differentiation. Consistently,

our data showed similarly decreased expression of miR-128a and

miR-328, and increased expression of let-7 family in MP of DPCs.

Figure 6. Effects of DNMT3A and DNMT3B on miR-720 and NANOG expression levels. A–B) Overexpression of DNMT3A and DNMT3B upon
transfection in DPCs cells. *** P,0.001, unpaired t-test, compared to pcDNA control group. Results are representative of 3 independent experiments.
C–D) Quantification of NANOG mRNA and endogenous mature miR-720 upon overexpression of DNMT3A or DNMT3B. Either DNMT3A or DNMT3B
reduced NANOG mRNA, but no significant changes were observed in miR-720 levels. Results in C–D are representative of 4 independent experiments.
** P,0.01, *** P,0.001, NS = non-significant, one-way ANOVA/Tukey, compared to pcDNA control group. E) Quantification of NANOG mRNA upon
co-transfection of anti-miR-720 and DNMT3A or DNMT3B overexpression constructs in DPCs. NANOG mRNA level was increased by miR-720
knockdown but was reduced by either DNMT3A or DNMT3B. Results are representative of 4 independent experiments. * P,0.05, ** P,0.01, one-way
ANOVA/Tukey.
doi:10.1371/journal.pone.0083545.g006
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Taken together, these data demonstrate that the methods applied

in our study produced results highly consistent with prior works.

Since miR-720 levels were increased in differentiated MP cells,

we suspected a possible association of miR-720 with the silencing

of stem cell-related genes that could consequently enhance

differentiation ability of cells. Indeed, mimic-miR-720 reduced

the levels of NANOG as well as the percentage of SSEA-4+ cells

and enhanced odontogenic differentiation of DPCs.

As demonstrated by luciferase assay, it is likely that miR-720

regulates NANOG transcripts by direct binding to the specific

recognition site in its 39-UTR (Fig. 5D). However, in addition,

miR-720 overexpression was associated with increases in the levels

of DNMTs, which is an unexpected effect of miRNAs. miRNAs are

best known as repressors of translation and mRNA stability

through base pairing to specific 39-UTR target sites together with

AGO and RISC protein complex. Thus, miR-720-driven increas-

es in DNMTs expression could involve an indirect regulatory

mechanism mediated by one or more unknown secondary factors.

Alternatively, miR-720 could also target sequences in the

promoters of DNMT genes and activate the transcription of the

genes, similarly to the mechanisms reported in miR-373-induced

Figure 7. miR-720 promotes odontogenic differentiation of DPCs. A–B) Transfection of mimic-miR-720 promoted odontogenic
differentiation of DPCs as demonstrated by ALP staining and alizarin red staining (A), as well as by mRNA quantification of ALP and OPN,
mineralization markers. Results are representative of 3 independent experiments. * P,0.05, *** P,0.001, unpaired t-test, compared to si-control
group. C–D) Knockdown of miR-720 decreased the differentiation of DPCs. Lower ALP activity and transcript levels were observed in anti-miR-720-
transfected group. No significant changes in Alizarin red staining and OPN mRNA. Results are representative of at least 3 independent experiments. *
P,0.05, NS = non-significant, unpaired t-test, compared to si-control group. E–F) Co-transfection experiments with anti-miR-720 and DNMT3A or
DNMT3B expression constructs. Anti-miR-720 inhibited DPC differentiation, but either DNMT3A or DNMT3B over-rescued the decreased odontogenic
differentiation of DPCs induced by miR-720 knockdown, as demonstrated by alizarin red staining and OPN mRNA quantification, at day 7 and day 4
after odontogenic induction, respectively. Results are representative of at least 2 independent experiments. * P,0.05, ** P,0.01, *** P,0.001, one-
way ANOVA/Tukey.
doi:10.1371/journal.pone.0083545.g007
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E-cadherin trans-activation [22]. Further investigation will be

necessary to clarify the exact mechanism behind these processes.

Previous reports also show that DNA methylation plays a

central role in regulating the on/off switch of differentiation-

related genes and signals. Additionally, dysfunctional methylation

due to deficiencies in Dnmt3a and Dnmt3b has been reported to be

associated with altered expression of Nanog and Oct-4 during

differentiation of murine ES cells. In these studies, DNMTs acted

as transcriptional repressors of Nanog and Oct-4 genes in ES cells

[30,37,38]. Accordingly, we herein showed that DNMT3A and

DNMT3B also repressed NANOG mRNA levels [30]; however,

through a mechanism independent from the miR-720-mediated

one (Fig. 7E).

Finally, a previous study has shown miR-720 transcribed

downstream from the co-transcriptional factor Ski-related novel

gene (SnoN/SKIL) in esophageal squamous cell carcinoma

(ESCC) cells [39], and that down-regulation of SnoN decreased

the levels of miR-720 as well as ESCC cell proliferation. Those

results are in concord with our present experiments showing that

miR-720 knockdown increases the number of non-proliferating ki-

67 negative DPCs (Fig. 8).

Collectively, our data show that miR-720 participates in the

control of the stem cell phenotype of DPCs by directly repressing

NANOG levels and also indirectly, by enhancing the expression of

DNMTs that can function as transcriptional repressing factors for

NANOG gene. miR-720 also promoted DPC differentiation, and

therefore, could be a potential target to either maintain the stem

cell phenotype or to support bone/mineralized tissue formation in

regenerative medicine.

Supporting Information

Figure S1 Characterization of DPCs by stem cell-
related surface markers by FCM analysis. DPCs were

positive to SSEA-4, CD146 and CD44; and negative to CD24,

CD34 and CD45.

(TIF)

Table S1 List of miRNAs that presented more than 2
fold increase in MP cells. Values show the fold change (MP/

SP cells) in each cell type and the average. DPC = dental pulp

cells. PDLCs = periodontal ligament cells.

(XLS)

Table S2 List of miRNAs that presented more than 1.15
fold increase in average in SP cells. Values show the fold

change (SP/MP cells) in each cell type and the average. DPC =

dental pulp cells. PDLCs = periodontal ligament cells.

(XLS)

Table S3 List of the designed oligonucleotides contain-
ing 3 tandem copies of miR-720 predicted target site in

Figure 8. Cell cycle analysis upon transfection of mimic-miR-720 or anti-miR-720. A–B) Imaging and quantitative analysis of
immunocytochemistry for ki-67, showing that miR-720 reduced proliferation of DPCs. Results are representative of 3 independent experiments. **
P,0.01, unpaired t-test, compared to si-control group. C) Knockdown of miR-720 increased the number of ki-67- quiescent cells. ** P,0.01, unpaired
t-test, compared to si-control group. Results are representative of at least 3 independent experiments. D) Co-transfection of anti-miR-720 and
DNMT3A or DNMT3B expression constructs showed that either DNMT3A or DNMT3B nullified the decreased proliferation of DPCs induced by miR-720
blockade. Results are representative of at least 2 independent experiments. * P,0.05, ** P,0.01, one-way ANOVA/Tukey.
doi:10.1371/journal.pone.0083545.g008
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NANOG 39-UTR. Mutant 1 and Mutant 2 correspond to point

mutations in the seed sequence of miR-720 predicted target site in

NANOG 39-UTR.

(XLSX)
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