2,248 research outputs found
Can multistate dark matter annihilation explain the high-energy cosmic ray lepton anomalies?
Multistate dark matter (DM) models with small mass splittings and couplings
to light hidden sector bosons have been proposed as an explanation for the
PAMELA/Fermi/H.E.S.S. high-energy lepton excesses. We investigate this proposal
over a wide range of DM density profiles, in the framework of concrete models
with doublet or triplet dark matter and a hidden SU(2) gauge sector that mixes
with standard model hypercharge. The gauge coupling is bounded from below by
the DM relic density, and the Sommerfeld enhancement factor is explicitly
computable for given values of the DM and gauge boson masses M, mu and the
(largest) dark matter mass splitting delta M_{12}. Sommerfeld enhancement is
stronger at the galactic center than near the Sun because of the radial
dependence of the DM velocity profile, which strengthens the inverse Compton
(IC) gamma ray constraints relative to usual assumptions. We find that the
PAMELA/Fermi/H.E.S.S. lepton excesses are marginally compatible with the model
predictions, and with CMB and Fermi gamma ray constraints, for M ~ 800 GeV, mu
~ 200 MeV, and a dark matter profile with noncuspy Einasto parameters alpha >
0.20, r_s ~ 30 kpc. We also find that the annihilating DM must provide only a
subdominant (< 0.4) component of the total DM mass density, since otherwise the
boost factor due to Sommerfeld enhancement is too large.Comment: 20 pages, 12 figures; v2: Corrected branching ratio for ground state
DM annihilations into leptons, leading to boost factors that are larger than
allowed. Added explicit results for doublet DM model. Some conclusions
changed; main conclusion of tension between inverse Compton constraints and
N-body simulations of halo profiles is unchange
Mental health interest and its prediction during the covid-19 pandemic using google trends
This study aimed to analyze and predict interest in mental health-related queries created in Google Trends (GT) during the COVID-19 pandemic. The Google Trends tool collected data on the Google search engine interest and provided real-time surveillance. Five key phrases: “depression”, “insomnia”, ”loneliness”, “psychologist”, and “psychiatrist”, were studied for the period from 25 September 2016 to 19 September 2021. The predictions for the upcoming trend were carried out for the period from September 2021 to September 2023 and were estimated by a hybrid five-component model. The results show a decrease of interest in the search queries “depression” and “loneliness” by 15.3% and 7.2%, respectively. Compared to the period under review, an increase of 5.2% in “insomnia” expression and 8.4% in the “psychiatrist” phrase were predicted. The expression “psychologist” is expected to show an almost unchanged interest. The upcoming changes in the expressions connected with mental health might be explained by vaccination and the gradual removal of social distancing rules. Finally, the analysis of GT can provide a timely insight into the mental health interest of a population and give a forecast for a short period trend
Resolution of the Klein Paradox
We present a resolution of the Klein paradox within the framework of
one-particle relativistic quantum mechanics. Not only reflection becomes total
but the vacuum remains neutral as well. This is accomplished by replacing the
pair production process with virtual negative energy "incidence" within the
barrier in a similar manner to what is done with image charges in electrostatic
and virtual sources in optics.Comment: 9 pages, 8 figure
Charge Fluctuations in the Edge States of N-S hybrid Nano-Structures
In this work we show how to calculate the equilibrium and non-equilibrium
charge fluctuations in a gated normal mesoscopic conductor which is attached to
one normal lead and one superconducting lead. We then consider an example where
the structure is placed in a high magnetic field, such that the transport is
dominated by edge states. We calculate the equilibrium and non-equilibrium
charge fluctuations in the gate, for a single edge state, comparing our results
to those for the same system, but with two normal leads. We then consider the
specific example of a quantum point contact and calculate the charge
fluctuations in the gate for more than one edge state.Comment: 4 pages with 1 figure. In published version the high magnetic field
dynamics of the holes is treated incorrectly. An erratum is in preparatio
Optical precursors in transparent media
We theoretically study the linear propagation of a stepwise pulse through a
dilute dispersive medium when the frequency of the optical carrier coincides
with the center of a natural or electromagnetically induced transparency window
of the medium (slow-light systems). We obtain fully analytical expressions of
the entirety of the step response and show that, for parameters representative
of real experiments, Sommerfeld-Brillouin precursors, main field and second
precursors "postcursors" can be distinctly observed, all with amplitudes
comparable to that of the incident step. This behavior strongly contrasts with
that of the systems generally considered up to now
On the regular-geometric-figure solution to the N-body problem
The regular-geometric-figure solution to the -body problem is presented in
a very simple way. The Newtonian formalism is used without resorting to a more
involved rotating coordinate system. Those configurations occur for other kinds
of interactions beyond the gravitational ones for some special values of the
parameters of the forces. For the harmonic oscillator, in particular, it is
shown that the -body problem is reduced to one-body problems.Comment: To appear in Eur. J. Phys. (5 pages
Temperature-dependent quantum electron transport in 2D point contact
We consider a transmission of electrons through a two-dimensional ballistic
point contact in the low-conductance regime below the 0.7-anomaly. The
scattering of electrons by Friedel oscillations of charge density results in a
contribution to the conductance proportional to the temperature. The sign of
this linear term depends on the range of the electron-electron interaction and
appears to be negative for the relevant experimental parameters.Comment: 10 pages, 5 figure
- …