42 research outputs found

    Performance analysis of AlGaAs/GaAs tunnel junctions for ultra-high concentration photovoltaics

    Get PDF
    An n(++)-GaAs/p(++)-AlGaAs tunnel junction with a peak current density of 10 100Acm(-2) is developed. This device is a tunnel junction for multijunction solar cells, grown lattice-matched on standard GaAs or Ge substrates, with the highest peak current density ever reported. The voltage drop for a current density equivalent to the operation of the multijunction solar cell up to 10 000 suns is below 5 mV. Trap-assisted tunnelling is proposed to be behind this performance, which cannot be justified by simple band-to-band tunnelling. The metal-organic vapour-phase epitaxy growth conditions, which are in the limits of the transport-limited regime, and the heavy tellurium doping levels are the proposed origins of the defects enabling trap-assisted tunnelling. The hypothesis of trap-assisted tunnelling is supported by the observed annealing behaviour of the tunnel junctions, which cannot be explained in terms of dopant diffusion or passivation. For the integration of these tunnel junctions into a triple-junction solar cell, AlGaAs barrier layers are introduced to suppress the formation of parasitic junctions, but this is found to significantly degrade the performance of the tunnel junctions. However, the annealed tunnel junctions with barrier layers still exhibit a peak current density higher than 2500Acm(-2) and a voltage drop at 10 000 suns of around 20 mV, which are excellent properties for tunnel junctions and mean they can serve as low-loss interconnections in multijunction solar cells working at ultra-high concentrations

    NGCPV: a new generation of concentrator photovoltaic cells, modules and systems

    Get PDF
    Starting on June 2011, NGCPV is the first project funded jointly between the European Commission (EC) and the New Energy and Industrial Technology Development Organization (NEDO) of Japan to research on new generation concentration photovoltaics (CPV). The Project, through a collaborative research between seven European and nine Japanese leading research centers in the field of CPV, aims at lowering the cost of the CPVproduced photovoltaic kWh down to 5 ?cents. The main objective of the project is to improve the present concentrator cell, module and system efficiency, as well as developing advanced characterization tools for CPV components and systems. As particular targets, the project aims at achieving a cell efficiency of at least 45% and a CPV module with an efficiency greater than 35%. This paper describes the R&D activities that are being carried out within the NGCPV project and summarizes some of the most relevant results that have already been attained, for instance: the manufacturing of a 44.4% world record efficiency triple junction solar cell (by Sharp Corp.) and the installation of a 50 kWp experimental CPV plant in Spain, which will be used to obtain accurate forecasts of the energy produced at system level

    Promotoras as Mental Health Practitioners in Primary Care: A Multi-Method Study of an Intervention to Address Contextual Sources of Depression

    Get PDF
    We assessed the role of promotoras—briefly trained community health workers—in depression care at community health centers. The intervention focused on four contextual sources of depression in underserved, low-income communities: underemployment, inadequate housing, food insecurity, and violence. A multi-method design included quantitative and ethnographic techniques to study predictors of depression and the intervention’s impact. After a structured training program, primary care practitioners (PCPs) and promotoras collaboratively followed a clinical algorithm in which PCPs prescribed medications and/or arranged consultations by mental health professionals and promotoras addressed the contextual sources of depression. Based on an intake interview with 464 randomly recruited patients, 120 patients with depression were randomized to enhanced care plus the promotora contextual intervention, or to enhanced care alone. All four contextual problems emerged as strong predictors of depression (chi square, p < .05); logistic regression revealed housing and food insecurity as the most important predictors (odds ratios both 2.40, p < .05). Unexpected challenges arose in the intervention’s implementation, involving infrastructure at the health centers, boundaries of the promotoras’ roles, and “turf” issues with medical assistants. In the quantitative assessment, the intervention did not lead to statistically significant improvements in depression (odds ratio 4.33, confidence interval overlapping 1). Ethnographic research demonstrated a predominantly positive response to the intervention among stakeholders, including patients, promotoras, PCPs, non-professional staff workers, administrators, and community advisory board members. Due to continuing unmet mental health needs, we favor further assessment of innovative roles for community health workers

    Effects of Anacetrapib in Patients with Atherosclerotic Vascular Disease

    Get PDF
    BACKGROUND: Patients with atherosclerotic vascular disease remain at high risk for cardiovascular events despite effective statin-based treatment of low-density lipoprotein (LDL) cholesterol levels. The inhibition of cholesteryl ester transfer protein (CETP) by anacetrapib reduces LDL cholesterol levels and increases high-density lipoprotein (HDL) cholesterol levels. However, trials of other CETP inhibitors have shown neutral or adverse effects on cardiovascular outcomes. METHODS: We conducted a randomized, double-blind, placebo-controlled trial involving 30,449 adults with atherosclerotic vascular disease who were receiving intensive atorvastatin therapy and who had a mean LDL cholesterol level of 61 mg per deciliter (1.58 mmol per liter), a mean non-HDL cholesterol level of 92 mg per deciliter (2.38 mmol per liter), and a mean HDL cholesterol level of 40 mg per deciliter (1.03 mmol per liter). The patients were assigned to receive either 100 mg of anacetrapib once daily (15,225 patients) or matching placebo (15,224 patients). The primary outcome was the first major coronary event, a composite of coronary death, myocardial infarction, or coronary revascularization. RESULTS: During the median follow-up period of 4.1 years, the primary outcome occurred in significantly fewer patients in the anacetrapib group than in the placebo group (1640 of 15,225 patients [10.8%] vs. 1803 of 15,224 patients [11.8%]; rate ratio, 0.91; 95% confidence interval, 0.85 to 0.97; P=0.004). The relative difference in risk was similar across multiple prespecified subgroups. At the trial midpoint, the mean level of HDL cholesterol was higher by 43 mg per deciliter (1.12 mmol per liter) in the anacetrapib group than in the placebo group (a relative difference of 104%), and the mean level of non-HDL cholesterol was lower by 17 mg per deciliter (0.44 mmol per liter), a relative difference of -18%. There were no significant between-group differences in the risk of death, cancer, or other serious adverse events. CONCLUSIONS: Among patients with atherosclerotic vascular disease who were receiving intensive statin therapy, the use of anacetrapib resulted in a lower incidence of major coronary events than the use of placebo. (Funded by Merck and others; Current Controlled Trials number, ISRCTN48678192 ; ClinicalTrials.gov number, NCT01252953 ; and EudraCT number, 2010-023467-18 .)

    Transient Analysis of Luminescent Coupling Effects in Multi-junction Solar Cells

    No full text
    We investigate the luminescent coupling (LC) effects in a four-junction GaInP/GaAs//GaInAsP/GaInAs concentrator solar cell based on transient open-circuit voltage (Voc) measurements under monochromatic illumination. Photocurrent generation in the non-absorbing GaInAs bottom subcell due to LC from upper subcells shows superlinear behavior with increasing light intensity. Along with this, a Voc enhancement is observed and quantified for illumination intensities that span almost six orders of magnitude. The Voc increase is explained and studied using a series-connected diode model including subcell shunt resistances, capacitances, and LC effects. The impact of unilluminated subcells on the subcell Voc determination is discussed for multi-junction solar cells. Finally, in the analysis of the LC generated photocurrent, namely, the coupling factor from the GaInAsP to the non-absorbing GaInAs subcell, a characteristic dependency on bias voltage is shown and explained by a result of competing photo- and electroluminescence mechanisms

    Standardization of the CPV and car-roof PV technology in 2018 - Where are we going to go?: Where are we going to go?

    No full text
    The work of IEC TC82 WG7 aims for the standardization of concentrator modules, and their optics, mechanics and other advanced photovoltaic systems. These standards will be in the general areas of safety, photoelectric performance and environmental reliability tests. The standards ultimately produced should be universal and non-restrictive in their application, taking into account different environments and manufacturing technologies. In addition to the essential electrical and mechanical characteristics, standards will be written for other important factors such as thermal performance, high voltage performance, angular performance, mechanical precision, specific testing fault resistance and fault-tolerant design. Recently an expanded group started to discuss standardization of the car-roof PV

    Understanding InP Nanowire Array Solar Cell Performance by Nanoprobe-Enabled Single Nanowire Measurements

    No full text
    III-V solar cells in the nanowire geometry might hold significant synthesis-cost and device-design advantages as compared to thin films and have shown impressive performance improvements in recent years. To continue this development there is a need for characterization techniques giving quick and reliable feedback for growth development. Further, characterization techniques which can improve understanding of the link between nanowire growth conditions, subsequent processing, and solar cell performance are desired. Here, we present the use of a nanoprobe system inside a scanning electron microscope to efficiently contact single nanowires and characterize them in terms of key parameters for solar cell performance. Specifically, we study single as-grown InP nanowires and use electron beam induced current characterization to understand the charge carrier collection properties, and dark current-voltage characteristics to understand the diode recombination characteristics. By correlating the single nanowire measurements to performance of fully processed nanowire array solar cells, we identify how the performance limiting parameters are related to growth and/or processing conditions. We use this understanding to achieve a more than 7-fold improvement in efficiency of our InP nanowire solar cells, grown from a different seed particle pattern than previously reported from our group. The best cell shows a certified efficiency of 15.0%; the highest reported value for a bottom-up synthesized InP nanowire solar cell. We believe the presented approach have significant potential to speed-up the development of nanowire solar cells, as well as other nanowire-based electronic/optoelectronic devices

    Understanding InP Nanowire Array Solar Cell Performance by Nanoprobe-Enabled Single Nanowire Measurements

    Get PDF
    III–V solar cells in the nanowire geometry might hold significant synthesis-cost and device-design advantages as compared to thin films and have shown impressive performance improvements in recent years. To continue this development there is a need for characterization techniques giving quick and reliable feedback for growth development. Further, characterization techniques which can improve understanding of the link between nanowire growth conditions, subsequent processing, and solar cell performance are desired. Here, we present the use of a nanoprobe system inside a scanning electron microscope to efficiently contact single nanowires and characterize them in terms of key parameters for solar cell performance. Specifically, we study single as-grown InP nanowires and use electron beam induced current characterization to understand the charge carrier collection properties, and dark current–voltage characteristics to understand the diode recombination characteristics. By correlating the single nanowire measurements to performance of fully processed nanowire array solar cells, we identify how the performance limiting parameters are related to growth and/or processing conditions. We use this understanding to achieve a more than 7-fold improvement in efficiency of our InP nanowire solar cells, grown from a different seed particle pattern than previously reported from our group. The best cell shows a certified efficiency of 15.0%; the highest reported value for a bottom-up synthesized InP nanowire solar cell. We believe the presented approach have significant potential to speed-up the development of nanowire solar cells, as well as other nanowire-based electronic/optoelectronic devices
    corecore