160 research outputs found

    Identification of quantitative trait loci associated with iron deficiency chlorosis resistance in groundnut ( Arachis hypogaea )

    Get PDF
    Iron deficiency chlorosis is an important abiotic stress affecting groundnut production worldwide in calcareous and alkaline soils with a pH of 7.5–8.5. To identify genomic regions controlling iron deficiency chlorosis resistance in groundnut, the recombinant inbred line population from the cross TAG 24 × ICGV 86031 was evaluated for associated traits like visual chlorosis rating and SPAD chlorophyll meter reading across three crop growth stages for two consecutive years. Thirty-two QTLs were identified for visual chlorosis rating (3.9%–31.8% phenotypic variance explained [PVE]) and SPAD chlorophyll meter reading [3.8%–11% PVE] across three stages over 2 years. This is the first report of identification of QTLs for iron deficiency chlorosis resistance- associated traits in groundnut. Three major QTLs (>10% PVE) were identified at severe stage, while majority of other QTLs were having small effects. Interestingly, two major QTLs for visual chlorosis rating at 60 days (2013) and 90 days (2014) were located at same position on LG AhXIII. The identified QTLs/markers after validation across diverse genetic material could be used in genomics-assisted breeding

    Tolvaptan use in children and adolescents with autosomal dominant polycystic kidney disease: rationale and design of a two-part, randomized, double-blind, placebo-controlled trial

    Get PDF
    This report describes the rationale and design of a study assessing tolvaptan in children with autosomal dominant polycystic kidney disease (ADPKD). Phase A is a 1-year, randomized, double-blind, placebo-controlled, multicenter trial. Phase B is a 2-year, open-label extension. The target population is at least 60 children aged 12–17 years, diagnosed by family history and/or genetic criteria and the presence of ≥ 10 renal cysts, each ≥ 0.5 cm on magnetic resonance imaging. Subjects will be allocated into 4 groups: females 15–17 years; females 12–14 years; males 15–17 years; and males 12–14 years. Up to 40 subjects aged 4–11 years may also enroll, provided they meet the entry criteria. Weight-adjusted tolvaptan doses, titrated once to achieve a tolerated maintenance dose, and matching placebo will be administered twice-daily. Assessments include spot urine osmolality and specific gravity (co-primary endpoints), height-adjusted total kidney volume, estimated glomerular filtration rate, pharmacodynamic parameters (urine volume, fluid intake and fluid balance, serum sodium, serum creatinine, free water clearance), pharmacokinetic parameters, safety (aquaretic adverse events, changes from baseline in creatinine, vital signs, laboratory values including liver function tests), and generic pediatric quality of life assessments. Conclusion: This will be the first clinical study to evaluate tolvaptan in pediatric ADPKD

    Chronic Citalopram Administration Causes a Sustained Suppression of Serotonin Synthesis in the Mouse Forebrain

    Get PDF
    BACKGROUND:Serotonin (5-HT) is a neurotransmitter with important roles in the regulation of neurobehavioral processes, particularly those regulating affect in humans. Drugs that potentiate serotonergic neurotransmission by selectively inhibiting the reuptake of serotonin (SSRIs) are widely used for the treatment of psychiatric disorders. Although the regulation of serotonin synthesis may be an factor in SSRI efficacy, the effect of chronic SSRI administration on 5-HT synthesis is not well understood. Here, we describe effects of chronic administration of the SSRI citalopram (CIT) on 5-HT synthesis and content in the mouse forebrain. METHODOLOGY/PRINCIPAL FINDINGS:Citalopram was administered continuously to adult male C57BL/6J mice via osmotic minipump for 2 days, 14 days or 28 days. Plasma citalopram levels were found to be within the clinical range. 5-HT synthesis was assessed using the decarboxylase inhibition method. Citalopram administration caused a suppression of 5-HT synthesis at all time points. CIT treatment also caused a reduction in forebrain 5-HIAA content. Following chronic CIT treatment, forebrain 5-HT stores were more sensitive to the depleting effects of acute decarboxylase inhibition. CONCLUSIONS/SIGNIFICANCE:Taken together, these results demonstrate that chronic citalopram administration causes a sustained suppression of serotonin synthesis in the mouse forebrain. Furthermore, our results indicate that chronic 5-HT reuptake inhibition renders 5-HT brain stores more sensitive to alterations in serotonin synthesis. These results suggest that the regulation of 5-HT synthesis warrants consideration in efforts to develop novel antidepressant strategies

    Studies on the antidiarrhoeal activity of Aegle marmelos unripe fruit: Validating its traditional usage

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Aegle marmelos </it>(L.) Correa has been widely used in indigenous systems of Indian medicine due to its various medicinal properties. However, despite its traditional usage as an anti-diarrhoeal there is limited information regarding its mode of action in infectious forms of diarrhoea. Hence, we evaluated the hot aqueous extract (decoction) of dried unripe fruit pulp of <it>A. marmelos </it>for its antimicrobial activity and effect on various aspects of pathogenicity of infectious diarrhoea.</p> <p>Methods</p> <p>The decoction was assessed for its antibacterial, antigiardial and antirotaviral activities. The effect of the decoction on adherence of enteropathogenic <it>Escherichia coli </it>and invasion of enteroinvasive <it>E. coli </it>and <it>Shigella flexneri </it>to HEp-2 cells were assessed as a measure of its effect on colonization. The effect of the decoction on production of <it>E. coli </it>heat labile toxin (LT) and cholera toxin (CT) and their binding to ganglioside monosialic acid receptor (GM1) were assessed by GM1-enzyme linked immuno sorbent assay whereas its effect on production and action of <it>E. coli </it>heat stable toxin (ST) was assessed by suckling mouse assay.</p> <p>Results</p> <p>The decoction showed cidal activity against <it>Giardia </it>and rotavirus whereas viability of none of the six bacterial strains tested was affected. It significantly reduced bacterial adherence to and invasion of HEp-2 cells. The extract also affected production of CT and binding of both LT and CT to GM1. However, it had no effect on ST.</p> <p>Conclusion</p> <p>The decoction of the unripe fruit pulp of <it>A. marmelos</it>, despite having limited antimicrobial activity, affected the bacterial colonization to gut epithelium and production and action of certain enterotoxins. These observations suggest the varied possible modes of action of <it>A. marmelos </it>in infectious forms of diarrhoea thereby validating its mention in the ancient Indian texts and continued use by local communities for the treatment of diarrhoeal diseases.</p

    The completion of the Mammalian Gene Collection (MGC)

    Get PDF
    Since its start, the Mammalian Gene Collection (MGC) has sought to provide at least one full-protein-coding sequence cDNA clone for every human and mouse gene with a RefSeq transcript, and at least 6200 rat genes. The MGC cloning effort initially relied on random expressed sequence tag screening of cDNA libraries. Here, we summarize our recent progress using directed RT-PCR cloning and DNA synthesis. The MGC now contains clones with the entire protein-coding sequence for 92% of human and 89% of mouse genes with curated RefSeq (NM-accession) transcripts, and for 97% of human and 96% of mouse genes with curated RefSeq transcripts that have one or more PubMed publications, in addition to clones for more than 6300 rat genes. These high-quality MGC clones and their sequences are accessible without restriction to researchers worldwide

    Measuring serotonin synthesis: from conventional methods to PET tracers and their (pre)clinical implications

    Get PDF
    The serotonergic system of the brain is complex, with an extensive innervation pattern covering all brain regions and endowed with at least 15 different receptors (each with their particular distribution patterns), specific reuptake mechanisms and synthetic processes. Many aspects of the functioning of the serotonergic system are still unclear, partially because of the difficulty of measuring physiological processes in the living brain. In this review we give an overview of the conventional methods of measuring serotonin synthesis and methods using positron emission tomography (PET) tracers, more specifically with respect to serotonergic function in affective disorders. Conventional methods are invasive and do not directly measure synthesis rates. Although they may give insight into turnover rates, a more direct measurement may be preferred. PET is a noninvasive technique which can trace metabolic processes, like serotonin synthesis. Tracers developed for this purpose are α-[11C]methyltryptophan ([11C]AMT) and 5-hydroxy-L-[β-11C]tryptophan ([11C]5-HTP). Both tracers have advantages and disadvantages. [11C]AMT can enter the kynurenine pathway under inflammatory conditions (and thus provide a false signal), but this tracer has been used in many studies leading to novel insights regarding antidepressant action. [11C]5-HTP is difficult to produce, but trapping of this compound may better represent serotonin synthesis. AMT and 5-HTP kinetics are differently affected by tryptophan depletion and changes of mood. This may indicate that both tracers are associated with different enzymatic processes. In conclusion, PET with radiolabelled substrates for the serotonergic pathway is the only direct way to detect changes of serotonin synthesis in the living brain

    A prebiotic, Celmanax™, decreases Escherichia coli O157:H7 colonization of bovine cells and feed-associated cytotoxicity in vitro

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Escherichia coli </it>O157:H7 is the most common serovar of enterohemorrhagic <it>E. coli </it>associated with serious human disease outbreaks. Cattle are the main reservoir with <it>E. coli </it>O157:H7 inducing hemorrhagic enteritis in persistent shedding beef cattle, however little is known about how this pathogen affects cattle health. Jejunal Hemorrhage Syndrome (JHS) has unclear etiology but the pathology is similar to that described for <it>E. coli </it>O157:H7 challenged beef cattle suggestive that <it>E. coli </it>O157:H7 could be involved. There are no effective treatments for JHS however new approaches to managing pathogen issues in livestock using prebiotics and probiotics are gaining support. The first objective of the current study was to characterize pathogen colonization in hemorrhaged jejunum of dairy cattle during natural JHS outbreaks. The second objective was to confirm the association of mycotoxigenic fungi in feeds with the development of JHS and also to identify the presence of potential mycotoxins. The third objective was to determine the impact of a prebiotic, Celmanax™, or probiotic, Dairyman's Choice™ paste, on the cytotoxicity associated with feed extracts <it>in vitro</it>. The fourth objective was to determine the impact of a prebiotic or a probiotic on <it>E. coli </it>O157:H7 colonization of mucosal explants and a bovine colonic cell line <it>in vitro</it>. The final objective was to determine if prebiotic and probiotic feed additives could modify the symptoms that preceded JHS losses and the development of new JHS cases.</p> <p>Findings</p> <p>Dairy cattle developed JHS after consuming feed containing several types of mycotoxigenic fungi including <it>Fusarium culmorum</it>, <it>F. poae</it>, <it>F. verticillioides</it>, <it>F. sporotrichioides</it>, <it>Aspergillus</it><it>flavus</it>, <it>Penicillium roqueforti, P. crustosum, P. paneum </it>and <it>P. citrinum</it>. Mixtures of Shiga toxin - producing <it>Escherichia coli </it>(STEC) colonized the mucosa in the hemorrhaged tissues of the cattle and no other pathogen was identified. The STECs expressed Stx1 and Stx2, but more significantly, Stxs were also present in the blood clot blocking the jejunum. Mycotoxin analysis of the corn crop confirmed the presence of fumonisin, NIV, ZEAR, DON, 15-ADON, 3-ADON, NEO, DAS, HT-2 and T-2. Feed extracts were toxic to enterocytes and 0.1% Celmanax™ removed the cytotoxicity <it>in vitro</it>. There was no effect of Dairyman's Choice™ paste on feed-extract activity <it>in vitro</it>. Fumonisin, T-2, ZEAR and DON were toxic to bovine cells and 0.1% Celmanax™ removed the cytotoxicity <it>in vitro</it>. Celmanax™ also directly decreased <it>E. coli </it>O157:H7 colonization of mucosal explants and a colonic cell line in a dose-dependent manner. There was no effect of Dairyman's Choice™ paste on <it>E. coli </it>O157:H7 colonization <it>in vitro</it>. The inclusion of the prebiotic and probiotic in the feed was associated with a decline in disease.</p> <p>Conclusion</p> <p>The current study confirmed an association between mycotoxigenic fungi in the feed and the development of JHS in cattle. This association was further expanded to include mycotoxins in the feed and mixtures of STECs colonizing the severely hemorrhaged tissues. Future studies should examine the extent of involvement of the different STEC in the infection process. The prebiotic, Celmanax™, acted as an anti-adhesive for STEC colonization and a mycotoxin binder <it>in vitro</it>. Future studies should determine the extent of involvement of the prebiotic in altering disease.</p
    corecore