231 research outputs found

    The SOD2 C47T polymorphism influences NAFLD fibrosis severity: evidence from case-control and intra-familial allele association studies.

    Get PDF
    AIMS: Non-alcoholic fatty liver disease (NAFLD) is a complex disease trait where genetic variations and environment interact to determine disease progression. The association of PNPLA3 with advanced disease has been consistently demonstrated but many other modifier genes remain unidentified. In NAFLD, increased fatty acid oxidation produces high levels of reactive oxygen species. Manganese-dependent superoxide dismutase (MnSOD), encoded by the SOD2 gene, plays an important role in protecting cells from oxidative stress. A common non-synonymous polymorphism in SOD2 (C47T; rs4880) is associated with decreased MnSOD mitochondrial targeting and activity making it a good candidate modifier of NAFLD severity. METHODS: The relevance of the SOD2 C47T polymorphism to fibrotic NAFLD was assessed by two complementary approaches: we sought preferential transmission of alleles from parents to affected children in 71 family trios and adopted a case-control approach to compare genotype frequencies in a cohort of 502 European NAFLD patients. RESULTS: In the family study, 55 families were informative. The T allele was transmitted on 47/76 (62%) possible occasions whereas the C allele was transmitted on only 29/76 (38%) occasions, p=0.038. In the case control study, the presence of advanced fibrosis (stage>1) increased with the number of T alleles, p=0.008 for trend. Multivariate analysis showed susceptibility to advanced fibrotic disease was determined by SOD2 genotype (OR 1.56 (95% CI 1.09-2.25), p=0.014), PNPLA3 genotype (p=0.041), type 2 diabetes mellitus (p=0.009) and histological severity of NASH (p=2.0Ă—10(-16)). CONCLUSIONS: Carriage of the SOD2 C47T polymorphism is associated with more advanced fibrosis in NASH

    Feasibility and reference values of left atrial longitudinal strain imaging by two-dimensional speckle tracking

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The role of speckle tracking in the assessment of left atrial (LA) deformation dynamics is not established. We sought to determine the feasibility and reference ranges of LA longitudinal strain indices measured by speckle tracking in a population of normal subjects.</p> <p>Methods</p> <p>In 60 healthy individuals, peak atrial longitudinal strain (PALS) and time to peak longitudinal strain (TPLS) were measured using a 12-segment model for the left atrium. Values were obtained by averaging all segments (global PALS and TPLS) and by separately averaging segments measured in the two apical views (4- and 2-chamber average PALS and TPLS).</p> <p>Results</p> <p>Adequate tracking quality was achieved in 97% of segments analyzed. Inter and intra-observer variability coefficients of measurements ranged between 2.9% and 5.4%. Global PALS was 42.2 ± 6.1% (5–95° percentile range 32.2–53.2%), and global TPLS was 368 ± 30 ms (5–95° percentile range 323–430 ms). The 2-chamber average PALS was slightly higher than the 4-chamber average PALS (44.3 ± 6.0% vs 40.1 ± 7.9%, p < 0.0001), whereas no differences in TPLS were found (p = 0.93).</p> <p>Conclusion</p> <p>Speckle tracking is a feasible technique for the assessment of longitudinal myocardial LA deformation. Reference ranges of strain indices were reported.</p

    Supernormal functional reserve of apical segments in elite soccer players: an ultrasound speckle tracking handgrip stress study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Ultrasound speckle tracking from grey scale images allows the assessment of regional strain derived from 2D regardless of angle intonation, and it is highly reproducible. The study aimed to evaluate regional left ventricular functional reserve in elite soccer players.</p> <p>Methods</p> <p>50 subjects (25 elite athletes and 25 sedentary controls), aged 26 ± 3.5, were submitted to an echo exam, at rest and after the Hand Grip (HG) test. Both standard echo parameters and strain were evaluated.</p> <p>Results</p> <p>Ejection fraction was similar in athletes and controls both at rest (athletes 58 ± 2 vs controls 57 ± 4 p ns) and after HG (athletes 60 ± 2 vs controls 58 ± 3 p ns). Basal (septal and anterior) segments showed similar strain values in athletes and controls both at rest (athletes S% -19.9 ± 4.2; controls S% -18.8 ± 4.9 p = ns) and after HG (athletes S% -20.99 ± 2.8; controls S% -19.46 ± 4.4 p = ns). Medium-apical segments showed similar strain values at rest (athletes S% -17.31 ± 2.3; controls S% -20.00 ± 5.3 p = ns), but higher values in athletes after HG (athletes S% -24.47 ± 2.8; controls S% -20.47 ± 5.4 p < 0.05)</p> <p>Conclusion</p> <p>In athletes with physiological myocardial hypertrophy, a brief isometric effort produces enhancement of the strain in medium-apical left ventricular segments, suggesting the presence of a higher regional function reserve which can be elicited with an inotropic challenge and suitable methods of radial function quantification such as 2D-derived strain.</p

    Real-time evaluation of longitudinal peak systolic strain (speckle tracking measurement) in left and right ventricles of athletes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Strain, and particularly Longitudinal Peak Systolic Strain (LPSS), plays a role in investigating the segmental and overall contractility of the heart which is a particularly interesting feature in athletes in whom regular training determines several morphological and functional modifications in both the ventricles, that normally work at different loads. Speckle tracking techniques assess the LPSS of LV and RV from B-mode imaging in real time, with uniform accuracy in all segments, and can verify the possible dissimilar segmental contributions of the two chambers to overall myocardial contraction. The aim of the study is to quantify the LPSS in real time in both the ventricles in order to estimate any possible different deformation properties in them during a systolic period.</p> <p>Methods</p> <p>32 subjects (20 athletes and 18 controls) were submitted to a standard echocardiographic examination at rest and after a Hand Grip (HG) stress. From a four-chamber-view image, the LPSS parameter was measured with Speckle Tracking analysis in the basal and medium-apical segments of the two ventricles, at rest and after HG.</p> <p>Results</p> <p>In both athletes and controls, LPSS values were significantly higher in the RV of athletes (RV LPSS <sup>medium-apical </sup>-23.87 ± 4.94; <sup>basalfreewall </sup>-25.04 ± 4.12 at rest) and controls (RV LPSS<sup>medium-apical </sup>-25.21 ± 4.97; <sup>basalfreewall </sup>-28.69 ± 4.62 at rest) than in the LV of both (athletes LV LPSS <sup>medium-apical </sup>-18.14 ± 4.16; <sup>basallateralwall </sup>-16.05 ± 12.32; controls <sup>medium-apical </sup>-18.81 ± 2.64; <sup>basallateralwall </sup>-19.74 ± 3.84) With the HG test a significant enhancement of the LPSS(with P < .05) in the medium-apical segments of LV and RV was evident, but only in athletes; there was no modification of the standard echo-parameters in either group.</p> <p>Conclusion</p> <p>ST analysis is an easy method for investigating the contractility of the RV through deformation parameters, showing greater involvement of the RV than LV at rest. In athletes only, after isometric stress the two ventricles show particular myocardial deformation properties of the regions around the apex where the curvature of the wall is more marked. The clinical application of this new approach in athletes and normal subjects requires further investigation.</p

    Imaging aortic regurgitation: The incremental benefit of speckle tracking echocardiography

    Get PDF
    Aortic regurgitation (AR) affects global left ventricular mechanics. However, limited literature is available on how it may affect regional longitudinal strain. We present a case where severe AR jet is thrashing the anterior-septal wall and reducing its overall longitudinal performance most likely secondary to increased wall shear stress in diastole. This new insight into patho-physiological process using deformation study may have supplementary impact in decision making for surgical intervention. Transthoracic echocardiography is the primary imaging modality for the assessment of AR as it offers evaluation of severity of AR, aetiology of AR, left ventricular (LV) dilatation, LV systolic function, left ventricular mass, diastolic function and global strain. This case highlights the regional disturbances in longitudinal strain in eccentric AR

    Noninvasive monitoring of myocardial function after surgical and cytostatic therapy in a peritoneal metastasis rat model: assessment with tissue Doppler and non-Doppler 2D strain echocardiography

    Get PDF
    <p>Abstract</p> <p>Objective</p> <p>We sought to evaluate the impact of different antineoplastic treatment methods on systolic and diastolic myocardial function, and the feasibility estimation of regional deformation parameters with non-Doppler 2D echocardiography in rats.</p> <p>Background</p> <p>The optimal method for quantitative assessment of global and regional ventricular function in rats and the impact of complex oncological multimodal therapy on left- and right-ventricular function in rats remains unclear.</p> <p>Methods</p> <p>90 rats after subperitoneal implantation of syngenetic colonic carcinoma cells underwent different onclogical treatment methods and were diveded into one control group and five treatment groups (with 15 rats in each group): group 1 = control group (without operation and without medication), group 2 = operation group without additional therapy, group 3 = combination of operation and photodynamic therapy, group 4 = operation in combination with hyperthermic intraoperative peritoneal chemotherapy with mitomycine, and group 5 = operation in combination with hyperthermic intraoperative peritoneal chemotherapy with gemcitabine, group 6 = operation in combination with taurolidin i.p. instillation. Echocardiographic examination with estimation of wall thickness, diameters, left ventricular fractional shortening, ejection fraction, early and late diastolic transmitral and myocardial velocities, radial and circumferential strain were performed 3–4 days after therapy.</p> <p>Results</p> <p>There was an increase of LVEDD and LVESD in all groups after the follow-up period (P = 0.0037). Other LV dimensions, FS and EF as well as diastolic mitral filling parameters measured by echocardiography were not significantly affected by the different treatments. Values for right ventricular dimensions and function remained unchanged, whereas circumferential 2D strain of the inferior wall was slightly, but significantly reduced under the treatment (-18.1 ± 2.5 before and -16.2 ± 2.9 % after treatment; P = 0.001) without differences between the single treatment groups.</p> <p>Conclusion</p> <p>It is feasible to assess dimensions, global function, and regional contractility with echocardiography in rats under different oncological therapy. The deformation was decreased under overall treatment without influence by one specific therapy. Therefore, deformation assessment with non-Doppler 2D strain echocardiography is more sensitive than conventional echocardiography for assessing myocardial dysfunction in rats under oncological treatment.</p

    Preliminary clinical study of left ventricular myocardial strain in patients with non-ischemic dilated cardiomyopathy by three-dimensional speckle tracking imaging

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Non-ischemic dilated cardiomyopathy (DCM) is the most common cardiomyopathy worldwide, with significant mortality. Correct evaluation of the patient's myocardial function has important clinical significance in the diagnosis, therapeutic effect assessment and prognosis in non-ischemic DCM patients. This study evaluated the feasibility of three-dimensional speckle tracking imaging (3D-STE) for assessment of the left ventricular myocardial strain in patients with non-ischemic dilated cardiomyopathy (DCM).</p> <p>Methods</p> <p>Apical full-volume images were acquired from 65 patients with non-ischemic DCM (DCM group) and 59 age-matched normal controls (NC group), respectively. The following parameters were measured by 3D-STE: the peak systolic radial strain (RS), circumferential strain (CS), longitudinal strain (LS) of each segment. Then all the parameters were compared between the two groups.</p> <p>Results</p> <p>The peak systolic strain in different planes had certain regularities in normal groups, radial strain (RS) was the largest in the mid region, the smallest in the apical region, while circumferential strain (CS) and longitudinal strain (LS) increased from the basal to the apical region. In contrast, the regularity could not be applied to the DCM group. RS, CS, LS were significantly decreased in DCM group as compared with NC group (<it>P </it>< 0.001 for all). The interobserver, intraobserver and test-retest reliability were acceptable.</p> <p>Conclusions</p> <p>3D-STE is a reliable tool for evaluation of left ventricular myocardial strain in patients with non-ischemic DCM, with huge advantage in clinical application.</p
    • …
    corecore