98 research outputs found

    Spin disorder in maghemite nanoparticles investigated using polarized neutrons and nuclear resonant scattering

    Get PDF
    The manuscript reports the investigation of spin disorder in maghemite nanoparticles of different shape by a combination of polarized small-angle neutron scattering (SANSPOL) and nuclear forward scattering (NFS) techniques. Both methods are sensitive to magnetization on the nanoscale. SANSPOL allows for investigation of the particle morphology and spatial magnetization distribution and NFS extends this nanoscale information to the atomic scale, namely the orientation of the hyperfine field experienced by the iron nuclei. The studied nanospheres and nanocubes with diameters of 7.4 nm and 10.6 nm, respectively, exhibit a significant spin disorder. This effect leads to a reduction of the magnetization to 44% and 58% of the theoretical maghemite bulk value, observed consistently by both techniques

    Ab initio and nuclear inelastic scattering studies of Fe3_3Si/GaAs heterostructures

    Full text link
    The structure and dynamical properties of the Fe3_3Si/GaAs(001) interface are investigated by density functional theory and nuclear inelastic scattering measurements. The stability of four different atomic configurations of the Fe3_3Si/GaAs multilayers is analyzed by calculating the formation energies and phonon dispersion curves. The differences in charge density, magnetization, and electronic density of states between the configurations are examined. Our calculations unveil that magnetic moments of the Fe atoms tend to align in a plane parallel to the interface, along the [110] direction of the Fe3_3Si crystallographic unit cell. In some configurations, the spin polarization of interface layers is larger than that of bulk Fe3_3Si. The effect of the interface on element-specific and layer-resolved phonon density of states is discussed. The Fe-partial phonon density of states measured for the Fe3_3Si layer thickness of three monolayers is compared with theoretical results obtained for each interface atomic configuration. The best agreement is found for one of the configurations with a mixed Fe-Si interface layer, which reproduces the anomalous enhancement of the phonon density of states below 10 meVComment: 14 pages, 9 figures, 4 table

    Dynamics of Metal Centers Monitored by Nuclear Inelastic Scattering

    Full text link
    Nuclear inelastic scattering of synchrotron radiation has been used now since 10 years as a tool for vibrational spectroscopy. This method has turned out especially useful in case of large molecules that contain a M\"ossbauer active metal center. Recent applications to iron-sulfur proteins, to iron(II) spin crossover complexes and to tin-DNA complexes are discussed. Special emphasis is given to the combination of nuclear inelastic scattering and density functional calculations

    A Simple and Effective Method for Construction of Escherichia coli Strains Proficient for Genome Engineering

    Get PDF
    Multiplex genome engineering is a standalone recombineering tool for large-scale programming and accelerated evolution of cells. However, this advanced genome engineering technique has been limited to use in selected bacterial strains. We developed a simple and effective strain-independent method for effective genome engineering in Escherichia coli. The method involves introducing a suicide plasmid carrying the l Red recombination system into the mutS gene. The suicide plasmid can be excised from the chromosome via selection in the absence of antibiotics, thus allowing transient inactivation of the mismatch repair system during genome engineering. In addition, we developed another suicide plasmid that enables integration of large DNA fragments into the lacZ genomic locus. These features enable this system to be applied in the exploitation of the benefits of genome engineering in synthetic biology, as well as the metabolic engineering of different strains of E. coli.open7

    Spin-Polarized Transprot through Double Quantum Dots

    Full text link
    We investigate spin-polarized transport phenomena through double quantum dots coupled to ferromagnetic leads in series. By means of the slave-boson mean-field approximation, we calculate the conductance in the Kondo regime for two different configurations of the leads: spin-polarization of two ferromagnetic leads is parallel or anti-parallel. It is found that transport shows some remarkable properties depending on the tunneling strength between two dots. These properties are explained in terms of the Kondo resonances in the local density of states.Comment: 8 pages, 11 figure

    Spintronic transport and Kondo effect in quantum dots

    Full text link
    We investigate the spin-dependent transport properties of quantum-dot based structures where Kondo correlations dominate the electronic dynamics. The coupling to ferromagnetic leads with parallel magnetizations is known to give rise to nontrivial effects in the local density of states of a single quantum dot. We show that this influence strongly depends on whether charge fluctuations are present or absent in the dot. This result is confirmed with numerical renormalization group calculations and perturbation theory in the on-site interaction. In the Fermi-liquid fixed point, we determine the correlations of the electric current at zero temperature (shot noise) and demonstrate that the Fano factor is suppressed below the Poissonian limit for the symmetric point of the Anderson Hamiltonian even for nonzero lead magnetizations. We discuss possible avenues of future research in this field: coupling to the low energy excitations of the ferromagnets (magnons), extension to double quantum dot systems with interdot antiferromagnetic interaction and effect of spin-polarized currents on higher symmetry Kondo states such as SU(4).Comment: 11 pages, 5 figures. Proceedings of the 3rd Intl. Conf. on Physics and Applications of Spin-Related Phenomena in Semiconductors, Santa Barbara, 200

    Lattice dynamics of endotaxial silicide nanowires

    Get PDF
    Self-organized silicide nanowires are considered as main building blocks of future nanoelectronics and have been intensively investigated. In nanostructures, the lattice vibrational waves (phonons) deviate drastically from those in bulk crystals, which gives rise to anomalies in thermodynamic, elastic, electronic, and magnetic properties. Hence, a thorough understanding of the physical properties of these materials requires a comprehensive investigation of the lattice dynamics as a function of the nanowire size. We performed a systematic lattice dynamics study of endotaxial FeSi2_2 nanowires, forming the metastable, surface-stabilized α\alpha-phase, which are in-plane embedded into the Si(110) surface. The average widths of the nanowires ranged from 24 to 3 nm, their lengths ranged from several μ\mum to about 100 nm. The Fe-partial phonon density of states, obtained by nuclear inelastic scattering, exhibits a broadening of the spectral features with decreasing nanowire width. The experimental data obtained along and across the nanowires unveiled a pronounced vibrational anisotropy that originates from the specific orientation of the tetragonal α\alpha-FeSi2_2 unit cell on the Si(110) surface. The results from first-principles calculations are fully consistent with the experimental data and allow for a comprehensive understanding of the lattice dynamics of endotaxial silicide nanowires.Comment: 9 pages, 7 figures, 3 table

    Large-Scale Atomistic Simulations of Environmental Effects on the Formation and Properties of Molecular Junctions

    Full text link
    Using an updated simulation tool, we examine molecular junctions comprised of benzene-1,4-dithiolate bonded between gold nanotips, focusing on the importance of environmental factors and inter-electrode distance on the formation and structure of bridged molecules. We investigate the complex relationship between monolayer density and tip separation, finding that the formation of multi-molecule junctions is favored at low monolayer density, while single-molecule junctions are favored at high density. We demonstrate that tip geometry and monolayer interactions, two factors that are often neglected in simulation, affect the bonding geometry and tilt angle of bridged molecules. We further show that the structures of bridged molecules at 298 and 77 K are similar.Comment: To appear in ACS Nano, 30 pages, 5 figure
    corecore