847 research outputs found

    Multitone excitation analysis in RF energy harvesters—Considerations and limitations

    Full text link
    © 2018 IEEE. The effect of multitone excitation on the dc response of a voltage-doubler radio frequency energy harvester is analyzed. Theoretical analysis as well as frequency and time domain (TD) simulations were conducted to clarify the findings. Measurements were also carried out to validate the results. The measured, simulations and theoretical results are in good agreement. This paper focuses on evaluating the performance of a voltage doubler rectifier under multitone excitation (input power is the same in the single-tone and multitone case). Based on TD and harmonic balance simulations, theoretical and measurement analyses, it is evident that the application of multiple tones simultaneously within the matched frequency band and with the same average available power results in a lower average output dc power when compared with the single-tone case with the same input power. This trend is evident over a broad low input power range of −50 to −10 dBm (0.01–100 µW)

    Aging and Spaceflight: Catalase Targeted to Mitochondria Alters Skeletal Structure and Responses to Musculoskeletal Disuse

    Get PDF
    Microgravity and ionizing radiation in the spaceflight environment pose multiple challenges to homeostasis and may contribute to cellular stress. Effects may include increased generation of reactive oxygen species (ROS), DNA damage and repair error, cell cycle arrest, cell senescence or death. Our central hypothesis is that prolonged exposure to the spaceflight environment leads to excess production of ROS and oxidative damage, culminating in accelerated tissue degeneration which resembles aging. The main goal of this project is to determine the importance of cellular redox defense for physiological adaptations and tissue degeneration in the space environment. To accomplish this, we will use both wildtype (WT) mice and a well-established, genetically-engineered animal model (mCAT mice) which displays extended lifespan (Schriner et al. 2005). The animal model selected to test these ideas is engineered to quench ROS in mitochondria by targeted over-expression of the human catalase gene to the mitochondrial matrix. We showed previously that mCAT mice express the catalase transgene in skeletal tissues, bone forming osteoblasts, and bone resorbing osteoclasts. In addition, mCAT mice also display increased catalase activity in bone. Our findings revealed that exposure of adult, male, C57Bl/6J mice to simulated spaceflight (hindlimb unloading and gamma radiation) led to an increase in markers of oxidative damage (malondialdehyde, 4-hydroxynonenol) in skeletal tissue of WT mice but not mCAT mice. To extend our hypothesis to other, spaceflight-relevant tissues, we are performing a ground-based study simulating 30 days of spaceflight by hindlimb unloading to determine potential protective effects of mitochondrial catalase activity on aging of multiple tissues (cardiovascular, nervous and skeletal)

    Поповнення архівного фонду Скоропадських

    Get PDF
    У ЦДІАК України знаходяться на зберіганні документальні матеріали архіву Скоропадських, одного з найдавніших українських родів. Ці документи зібрано у фонді 1219 “Скоропадські – поміщики Полтавської, Чернігівської губерній”, вони висвітлюють життя та різнобічну діяльність декількох поколінь роду Скоропадських протягом близько двох століть

    Disentangled Representation Learning and Generation with Manifold Optimization

    Full text link
    Disentanglement is a useful property in representation learning which increases the interpretability of generative models such as Variational autoencoders (VAE), Generative Adversarial Models, and their many variants. Typically in such models, an increase in disentanglement performance is traded-off with generation quality. In the context of latent space models, this work presents a representation learning framework that explicitly promotes disentanglement by encouraging orthogonal directions of variations. The proposed objective is the sum of an autoencoder error term along with a Principal Component Analysis reconstruction error in the feature space. This has an interpretation of a Restricted Kernel Machine with the eigenvector matrix-valued on the Stiefel manifold. Our analysis shows that such a construction promotes disentanglement by matching the principal directions in the latent space with the directions of orthogonal variation in data space. In an alternating minimization scheme, we use Cayley ADAM algorithm - a stochastic optimization method on the Stiefel manifold along with the ADAM optimizer. Our theoretical discussion and various experiments show that the proposed model improves over many VAE variants in terms of both generation quality and disentangled representation learning

    Pyrolysis of organic side stream materials for the production of biochar as an amendment in green roofs: Characterization and field experiments

    Get PDF
    Green roofs offer a solution to worldwide problems in cities like: the urban heat island effect, floods and the loss of rural regions. Nevertheless, the widespread application of green roofs still faces some serious challenges, e.g. an excessive amount of drainage water, an excess of nutrients in this water, and plant mortality in periods of severe drought. Also, the production process of the components of these substrates, such as expanded clay, is not environmentally and energy-friendly. Biochar amendment in green roof substrates can help to overcome these problems because of its valuable properties like a high nutrient content, high waterholding capacity (WHC), low density and its self-sustaining production process. In this research, biochar is produced from six different side streams in a pilot-scale rotating kiln carbonization reactor (kg/hour input). These side streams consists out of: MDF, date palm, coffee skins, tree bark, olive stones and a waste wood mix. The produced biochars are characterized with multiple physico-chemical analyses like biochar yield, elemental composition, surface functional groups, morphology, WHC, cation exchange capacity and polyaromatic hydrocarbons (PAH’s). Furthermore, a techno-economical analysis is performed on the large-scale production of these biochars. Small scale (0,25 m2) and field experiments (2.5 m2) with biochar incorporated in commercially available green roof substrates in the temperate climate of the Netherlands and Belgium examine whether biochar can offer a solution to the described problems. Based on the analyses of the biochar, in particular the PAH’s and elemental composition, and the small scale growth experiments, two different biochars made from the waste wood mix and tree bark in concentrations of 1 and 5 % are selected for the field experiments. Growth of Sedum plants is monitored with digital imaging processing over a period of several months, starting from November 2018. Several chemical and physical parameters are monitored and linked to the properties of the biochar incorporated substrate like pH, conductivity, nutrient leaching and waterholding capacity
    corecore