40 research outputs found

    Heparanase is a prognostic indicator for postoperative survival in pancreatic carcinoma

    Get PDF
    British Journal of Cancer (2002) 87, 689–689. doi:10.1038/sj.bjc.6600504 www.bjcancer.co

    Improving compliance to colorectal cancer screening using blood and stool based tests in patients refusing screening colonoscopy in Germany

    Get PDF
    Background Despite strong recommendations for colorectal cancer (CRC) screening, participation rates are low. Understanding factors that affect screening choices is essential to developing future screening strategies. Therefore, this study assessed patient willingness to use non-invasive stool or blood based screening tests after refusing colonoscopy. Methods Participants were recruited during regular consultations. Demographic, health, psychological and socioeconomic factors were recorded. All subjects were advised to undergo screening by colonoscopy. Subjects who refused colonoscopy were offered a choice of non-invasive tests. Subjects who selected stool testing received a collection kit and instructions; subjects who selected plasma testing had a blood draw during the office visit. Stool samples were tested with the Hb/Hp Complex Elisa test, and blood samples were tested with the Epi proColon® 2.0 test. Patients who were positive for either were advised to have a diagnostic colonoscopy. Results 63 of 172 subjects were compliant to screening colonoscopy (37%). 106 of the 109 subjects who refused colonoscopy accepted an alternative non-invasive method (97%). 90 selected the Septin9 blood test (83%), 16 selected a stool test (15%) and 3 refused any test (3%). Reasons for blood test preference included convenience of an office draw, overall convenience and less time consuming procedure. Conclusions 97% of subjects refusing colonoscopy accepted a non-invasive screening test of which 83% chose the Septin9 blood test. The observation that participation can be increased by offering non-invasive tests, and that a blood test is the preferred option should be validated in a prospective trial in the screening setting

    Heparanase expression is a prognostic indicator for postoperative survival in pancreatic adenocarcinoma

    Get PDF
    Pancreatic ductal adenocarcinoma has a median survival of less than 6 months from diagnosis. This is due to the difficulty in early diagnosis, the aggressive biological behaviour of the tumour and a lack of effective therapies for advanced disease. Mammalian heparanase is a heparan-sulphate proteoglycan cleaving enzyme. It helps to degrade the extracellular matrix and basement membranes and is involved in angiogenesis. Degradation of extracellular matrix and basement membranes as well as angiogenesis are key conditions for tumour cell spreading. Therefore, we have analysed the expression of heparanase in human pancreatic cancer tissue and cell lines. Heparanase is expressed in cell lines derived from primary tumours as well as from metastatic sites. By immunohistochemical analysis, it is preferentially expressed at the invading edge of a tumour at both metastatic and primary tumour sites. There is a trend towards heparanase expression in metastasising tumours as compared to locally growing tumours. Postoperative survival correlates inversely with heparanase expression of the tumour reflected by a median survival of 34 and 17 month for heparanase negative and positive tumours, respectively. Our results suggest, that heparanase promotes cancer cell invasion in pancreatic carcinoma and could be used as a prognostic indicator for postoperative survival of patients

    Deterministic actin waves as generators of cell polarization cues

    No full text
    Dendritic cells "patrol" the human body to detect pathogens. In their search, dendritic cells perform a random walk by amoeboid migration. The efficiency of pathogen detection depends on the properties of the random walk. It is not known how the dendritic cells control these properties. Here, we quantify dendritic cell migration under well-defined 2-dimensional confinement and in a 3-dimensional collagen matrix through recording their long-term trajectories. We find 2 different migration states: persistent migration, during which the dendritic cells move along curved paths, and diffusive migration, which is characterized by successive sharp turns. These states exhibit differences in the actin distributions. Our theoretical and experimental analyses indicate that this kind of motion can be generated by spontaneous actin polymerization waves that contribute to dendritic cell polarization and migration. The relative distributions of persistent and diffusive migration can be changed by modification of the molecular actin filament nucleation and assembly rates. Thus, dendritic cells can control their migration patterns and adapt to specific environments. Our study offers an additional perspective on how dendritic cells tune their searches for pathogens
    corecore