209 research outputs found

    Structure of the Fulde-Ferrell-Larkin-Ovchinnikov state in two-dimensional superconductors

    Full text link
    Nonuniform superconducting state due to strong spin magnetism is studied in two-dimensional type-II superconductors near the second order phase transition line between the normal and the superconducting states. The optimum spatial structure of the orderparameter is examined in systems with cylindrical symmetric Fermi surfaces. It is found that states with two-dimensional structures have lower free energies than the traditional one-dimensional solutions, at low temperatures and high magnetic fields. For s-wave pairing, triangular, square, hexagonal states are favored depending on the temperature, while square states are favored at low temperatures for d-wave pairing. In these states, orderparameters have two-dimensional structures such as square and triangular lattices.Comment: 11 pages (LaTeX, revtex.sty), 3 figures; added reference

    LICC: L-BLP25 in patients with colorectal carcinoma after curative resection of hepatic metastases--a randomized, placebo-controlled, multicenter, multinational, double-blinded phase II trial

    Get PDF
    Background: 15-20% of all patients initially diagnosed with colorectal cancer develop metastatic disease and surgical resection remains the only potentially curative treatment available. Current 5-year survival following R0-resection of liver metastases is 28-39%, but recurrence eventually occurs in up to 70%. To date, adjuvant chemotherapy has not improved clinical outcomes significantly. The primary objective of the ongoing LICC trial (L-BLP25 In Colorectal Cancer) is to determine whether L-BLP25, an active cancer immunotherapy, extends recurrence-free survival (RFS) time over placebo in colorectal cancer patients following R0/R1 resection of hepatic metastases. L-BLP25 targets MUC1 glycoprotein, which is highly expressed in hepatic metastases from colorectal cancer. In a phase IIB trial, L-BLP25 has shown acceptable tolerability and a trend towards longer survival in patients with stage IIIB locoregional NSCLC. Methods: This is a multinational, phase II, multicenter, randomized, double-blind, placebo-controlled trial with a sample size of 159 patients from 20 centers in 3 countries. Patients with stage IV colorectal adenocarcinoma limited to liver metastases are included. Following curative-intent complete resection of the primary tumor and of all synchronous/metachronous metastases, eligible patients are randomized 2:1 to receive either L-BLP25 or placebo. Those allocated to L-BLP25 receive a single dose of 300 mg/m2 cyclophosphamide (CP) 3 days before first L-BLP25 dose, then primary treatment with s.c. L-BLP25 930 mug once weekly for 8 weeks, followed by s.c. L-BLP25 930 mug maintenance doses at 6-week (years 1&2) and 12-week (year 3) intervals unless recurrence occurs. In the control arm, CP is replaced by saline solution and L-BLP25 by placebo. Primary endpoint is the comparison of recurrence-free survival (RFS) time between groups. Secondary endpoints are overall survival (OS) time, safety, tolerability, RFS/OS in MUC-1 positive cancers. Exploratory immune response analyses are planned. The primary endpoint will be assessed in Q3 2016. Follow-up will end Q3 2017. Interim analyses are not planned. Discussion: The design and implementation of such a vaccination study in colorectal cancer is feasible. The study will provide recurrence-free and overall survival rates of groups in an unbiased fashion. Trial Registration EudraCT Number 2011-000218-2

    Crystalline Color Superconductivity

    Get PDF
    In any context in which color superconductivity arises in nature, it is likely to involve pairing between species of quarks with differing chemical potentials. For suitable values of the differences between chemical potentials, Cooper pairs with nonzero total momentum are favored, as was first realized by Larkin, Ovchinnikov, Fulde and Ferrell (LOFF). Condensates of this sort spontaneously break translational and rotational invariance, leading to gaps which vary periodically in a crystalline pattern. Unlike the original LOFF state, these crystalline quark matter condensates include both spin zero and spin one Cooper pairs. We explore the range of parameters for which crystalline color superconductivity arises in the QCD phase diagram. If in some shell within the quark matter core of a neutron star (or within a strange quark star) the quark number densities are such that crystalline color superconductivity arises, rotational vortices may be pinned in this shell, making it a locus for glitch phenomena.Comment: 40 pages, LaTeX with eps figs. v2: New paragraph on Ginzburg-Landau treatment of LOFF phase in section 5. References added. v3: Small changes only. Version to appear in Phys. Rev.

    Inhomogeneous Superconductivity in Condensed Matter and QCD

    Full text link
    Inhomogeneous superconductivity arises when the species participating in the pairing phenomenon have different Fermi surfaces with a large enough separation. In these conditions it could be more favorable for each of the pairing fermions to stay close to its Fermi surface and, differently from the usual BCS state, for the Cooper pair to have a non zero total momentum. For this reason in this state the gap varies in space, the ground state is inhomogeneous and a crystalline structure might be formed. This situation was considered for the first time by Fulde, Ferrell, Larkin and Ovchinnikov, and the corresponding state is called LOFF. The spontaneous breaking of the space symmetries in the vacuum state is a characteristic feature of this phase and is associated to the presence of long wave-length excitations of zero mass. The situation described here is of interest both in solid state and in elementary particle physics, in particular in Quantum Chromo-Dynamics at high density and small temperature. In this review we present the theoretical approach to the LOFF state and its phenomenological applications using the language of the effective field theories.Comment: RevTex, 83 pages, 26 figures. Submitted to Review of Modern Physic

    Expression of chemokine receptor CXCR4 in esophageal squamous cell and adenocarcinoma

    Get PDF
    BACKGROUND: Prognosis of esophageal cancer is poor despite curative surgery. The chemokine receptor CXCR4 has been proposed to distinctly contribute to tumor growth, dissemination and local immune escape in a limited number of malignancies. The aim of our study was to evaluate the role of CXCR4 in tumor spread of esophageal cancer with a differentiated view of the two predominant histologic types – squamous cell and adenocarcinoma. METHODS: Esophageal cancer tissue samples were obtained from 102 consecutive patients undergoing esophageal resection for cancer with curative intent. The LSAB+ System was used to detect the protein CXCR4. Tumor samples were classified into two groups based on the homogeneous staining intensity. A cut-off between CXCR4w (= weak expression) and CXCR4s (= strong expression) was set at 1.5 (grouped 0 – 1.5 versus 2.0 – 3). Long-term survival rates were calculated using life tables and the Kaplan-Meier method. Using the Cox's proportional hazards analysis, a model of survival prediction was established. RESULTS: The overall expression rate for CXCR4 in esophageal squamous cell carcinoma was 94.1%. Subdividing these samples, CXCR4w was found in 54.9% and CXCR4s in 45.1%. In adenocarcinoma, an overall expression rate of 89.1% was detected with a weak intensitiy in 71.7% compared to strong staining in 29.3% (p = 0.066 squamous cell versus adenocarcinoma). The Cox's proportional hazards analysis identified the pM-category with a hazard ratio (HR) of 1.860 (95% CI: 1.014–3.414) (p = 0.045), the histologic tumor type (HR: 0.334; 95% CI: 0.180–0.618) (p = 0.0001) and the operative approach (transthoracic > transhiatal esophageal resection) (HR: 0.546; 95% CI: 0.324–0.920) (p = 0.023) as independent factors with a possible influence on the long-term prognosis in patients with esophageal carcinoma, whereas CXCR4 expression was statistically not significant (>0.05). CONCLUSION: Expression of the chemokine receptor CXCR4 in esophageal cancer is of major relevance in both histologic entities – squamous cell and adenocarcinoma. Though with lack of statistical significance, strong CXCR4 expression revealed a poorer long-term prognosis following curative esophagectomy in both histologic subtypes. Thus, the exact biological functions of CXCR4 in terms of tumor dissemination of esophageal cancer is yet undetermined. Inhibition of esophageal cancer progression by CXCR4 antagonists might be a promising therapeutic option in the future

    Kinetics of immune responses to the AZD1222/Covishield vaccine with varying dose intervals in Sri Lankan individuals

    Get PDF
    Background To understand the kinetics of immune responses with different dosing gaps of the AZD1222 vaccine, we compared antibody and T cell responses in two cohorts with two different dosing gaps. Methods Antibodies to the SARS-CoV-2 virus were assessed in 297 individuals with a dosing gap of 12 weeks, sampled 12 weeks post second dose (cohort 1) and in 77 individuals with a median dosing gap of 21.4 weeks (cohort 2) sampled 6 weeks post second dose. ACE2-blocking antibodies (ACE2-blocking Abs), antibodies to the receptor-binding domain (RBD) of variants of concern (VOC), and ex vivo T cell responses were assessed in a subcohort. Results All individuals (100%) had SARS-CoV-2-specific total antibodies and 94.2% of cohort 1 and 97.1% of cohort 2 had ACE2-blocking Abs. There was no difference in antibody titers or positivity rates in different age groups in both cohorts. The ACE2-blocking Abs (p Conclusions Both dosing schedules resulted in high antibody and T cell responses post vaccination, although those with a longer dosing gap had a higher magnitude of responses, possibly as immune responses were measured 6 weeks post second dose compared to 12 weeks post second dose

    Architecture of the trypanosome RNA editing accessory complex, MRB1

    Get PDF
    Trypanosoma brucei undergoes an essential process of mitochondrial uridine insertion and deletion RNA editing catalyzed by a 20S editosome. The multiprotein mitochondrial RNA-binding complex 1 (MRB1) is emerging as an equally essential component of the trypanosome RNA editing machinery, with additional functions in gRNA and mRNA stabilization. The distinct and overlapping protein compositions of reported MRB1 complexes and diverse MRB1 functions suggest that the complex is composed of subcomplexes with RNA-dependent and independent interactions. To determine the architecture of the MRB1 complex, we performed a comprehensive yeast two-hybrid analysis of 31 reported MRB1 proteins. We also used in vivo analyses of tagged MRB1 components to confirm direct and RNA-mediated interactions. Here, we show that MRB1 contains a core complex comprised of six proteins and maintained by numerous direct interactions. The MRB1 core associates with multiple subcomplexes and proteins through RNA-enhanced or RNA-dependent interactions. These findings provide a framework for interpretation of previous functional studies and suggest that MRB1 is a dynamic complex that coordinates various aspects of mitochondrial gene regulation

    TAC102 is a novel component of the mitochondrial genome segregation machinery in trypanosomes

    Get PDF
    Trypanosomes show an intriguing organization of their mitochondrial DNA into a catenated network, the kinetoplast DNA (kDNA). While more than 30 proteins involved in kDNA replication have been described, only few components of kDNA segregation machinery are currently known. Electron microscopy studies identified a high-order structure, the tripartite attachment complex (TAC), linking the basal body of the flagellum via the mitochondrial membranes to the kDNA. Here we describe TAC102, a novel core component of the TAC, which is essential for proper kDNA segregation during cell division. Loss of TAC102 leads to mitochondrial genome missegregation but has no impact on proper organelle biogenesis and segregation. The protein is present throughout the cell cycle and is assembled into the newly developing TAC only after the pro-basal body has matured indicating a hierarchy in the assembly process. Furthermore, we provide evidence that the TAC is replicated de novo rather than using a semi-conservative mechanism. Lastly, we demonstrate that TAC102 lacks an N-terminal mitochondrial targeting sequence and requires sequences in the C-terminal part of the protein for its proper localization

    CXC receptor-4 mRNA silencing abrogates CXCL12-induced migration of colorectal cancer cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Interactions between CXCR4 and its ligand CXCL12 have been shown to be involved in cancer progression in colorectal cancer (CRC). We performed a comparative CXCL12/CXCR4 expression analysis and assessed the effect of external CXCL12 stimulation on migration of CRC cells without and with CXCR4 inhibition.</p> <p>Methods</p> <p>Expression of CXCL12/CXCR4 was assessed by quantitative real-time PCR, ELISA and immunohistochemistry in resection specimens of 50 CRC patients as well as in the corresponding normal tissues and in three human CRC cell lines with different metastatic potential (Caco-2, SW480 and HT-29). Migration assays were performed after stimulation with CXCL12 and CXCR4 was inhibited by siRNA and neutralizing antibodies.</p> <p>Results</p> <p>In CRC tissues CXCL12 was significantly down-regulated and CXCR4 was significantly up-regulated compared to the corresponding normal tissues. In cell lines CXCR4 was predominantly expressed in SW480 and less pronounced in HT-29 cells. CXCL12 was only detectable in Caco-2 cells. CXCL12 stimulation had no impact on Caco-2 cells but significantly increased migration of CXCR4 bearing SW480 and HT-29 cells. This effect was significantly abrogated by neutralizing anti-CXCR4 antibody as well as by CXCR4 siRNAs (P < 0.05).</p> <p>Conclusions</p> <p>CXCR4 expression was up-regulated in CRC and CXCL12 stimulation increased migration in CXCR4 bearing cell lines. Migration was inhibited by both neutralizing CXCR4 antibodies and CXCR4 siRNAs. Thus, the expression and functionality of CXCR4 might be associated with the metastatic potential of CRC cells and CXCL12/CXCR4 interactions might therefore constitute a promising target for specific treatment interventions.</p
    corecore