39 research outputs found

    Auricular Oedema and Dyshidrotic Eczema in a Patient with Acute Myeloid Leukaemia Treated with Cytarabine

    Get PDF
    Cytarabine is an effective drug in the treatment of haematological malignancies. The therapy is associated with various complications. Frequencies of dermatological side-effects range from 2–72% and occur most commonly after high-dose regimens. Although most cutaneous reactions are mild and resolve spontaneously within several days, they may result in an increased risk of infection and alterations in comfort. In some cases, severe life-threatening reactions have been reported. Here we describe the case of a patient with acute myeloid leukaemia, who developed severe exceptional skin toxicity in terms of auricular oedema and palmar dyshidrotic eczema after the application of low-dose cytarabine. Re-administration of the drug resulted in reduced skin toxicity during further cycles of chemotherapy. Negative epicutaneous patch-testing supported the existence of cytarabine-provoked toxicity

    A Novel Modular Antigen Delivery System for Immuno Targeting of Human 6-sulfo LacNAc-Positive Blood Dendritic Cells (SlanDCs)

    Get PDF
    Previously, we identified a major myeloid-derived proinflammatory subpopulation of human blood dendritic cells which we termed slanDCs (e.g. Schäkel et al. (2006) Immunity 24, 767-777). The slan epitope is an O-linked sugar modification (6-sulfo LacNAc, slan) of P-selectin glycoprotein ligand-1 (PSGL-1). As slanDCs can induce neoantigen-specific CD4+ T cells and tumor-reactive CD8+ cytotoxic T cells, they appear as promising targets for an in vivo delivery of antigens for vaccination. However, tools for delivery of antigens to slanDCs were not available until now. Moreover, it is unknown whether or not antigens delivered via the slan epitope can be taken up, properly processed and presented by slanDCs to T cells.Single chain fragment variables were prepared from presently available decavalent monoclonal anti-slan IgM antibodies but failed to bind to slanDCs. Therefore, a novel multivalent anti-slanDC scaffold was developed which consists of two components: (i) a single chain bispecific recombinant diabody (scBsDb) that is directed on the one hand to the slan epitope and on the other hand to a novel peptide epitope tag, and (ii) modular (antigen-containing) linker peptides that are flanked at both their termini with at least one peptide epitope tag. Delivery of a Tetanus Toxin-derived antigen to slanDCs via such a scBsDb/antigen scaffold allowed us to recall autologous Tetanus-specific memory T cells.In summary our data show that (i) the slan epitope can be used for delivery of antigens to this class of human-specific DCs, and (ii) antigens bound to the slan epitope can be taken up by slanDCs, processed and presented to T cells. Consequently, our novel modular scaffold system may be useful for the development of human vaccines

    Standardization of double blind placebo controlled food challenge with soy within a multicentre trial

    Get PDF
    Background: Multicentre trials investigating food allergies by double blind placebo controlled food challenges (DBPCFC) need standardized procedures, challenge meals and evaluation criteria. We aimed at developing a standardized approach for identifying patients with birch related soy allergy by means of DBPCFC to soy, including determination of threshold levels, in a multicentre setting. Methods: Microbiologically stable soy challenge meals were composed of protein isolate with consistent Gly m 4 levels. Patients sensitized to main birch allergen Bet v 1 and concomitant sensitization to its soy homologue Gly m 4 underwent DBPCFC. Outcome was defined according to presence and/or absence of ten objective signs and intensity of eight subjective symptoms as measured by visual analogue scale (VAS). Results: 138 adult subjects (63.8% female, mean age 38 years) underwent DBPCFC. Challenge meals and defined evaluation criteria showed good applicability in all centres involved. 45.7% presented with objective signs and 65.2% with subjective symptoms at soy challenge. Placebo challenge meals elicited non-cardiovascular objective signs in 11.6%. In 82 (59.4%) subjects DBPCFC was judged as positive. 70.7% of DPBCFC+ showed objective signs and 85.4% subjective symptoms at soy challenge. Subjective symptoms to soy challenge meal in DBPCFC+ subjects started at significantly lower dose levels than objective signs (p < 0.001). Median cumulative eliciting doses for first objective signs in DBPCFC+ subjects were 4.7 g [0.7–24.7] and 0.7 g [0.2–4.7] total soy protein for first subjective symptoms (p = 0.01). Conclusions: We present the hitherto largest group of adults with Bet v 1 and Gly m 4 sensitization being investigated by DBPCFC. In this type of food allergy evaluation of DBPCFC outcome should not only include monitoring of objective signs but also scoring of subjective symptoms. Our data may contribute to standardize DBPCFC in pollen-related food allergy in multicentre settings. Trial registration EudraCT: 2009-011737-27

    Peanut‐induced anaphylaxis in children and adolescents: Data from the European Anaphylaxis Registry

    Get PDF
    Background Peanut allergy has a rising prevalence in high-income countries, affecting 0.5%-1.4% of children. This study aimed to better understand peanut anaphylaxis in comparison to anaphylaxis to other food triggers in European children and adolescents. Methods Data was sourced from the European Anaphylaxis Registry via an online questionnaire, after in-depth review of food-induced anaphylaxis cases in a tertiary paediatric allergy centre. Results 3514 cases of food anaphylaxis were reported between July 2007 - March 2018, 56% in patients younger than 18 years. Peanut anaphylaxis was recorded in 459 children and adolescents (85% of all peanut anaphylaxis cases). Previous reactions (42% vs. 38%; p = .001), asthma comorbidity (47% vs. 35%; p < .001), relevant cofactors (29% vs. 22%; p = .004) and biphasic reactions (10% vs. 4%; p = .001) were more commonly reported in peanut anaphylaxis. Most cases were labelled as severe anaphylaxis (Ring&Messmer grade III 65% vs. 56% and grade IV 1.1% vs. 0.9%; p = .001). Self-administration of intramuscular adrenaline was low (17% vs. 15%), professional adrenaline administration was higher in non-peanut food anaphylaxis (34% vs. 26%; p = .003). Hospitalization was higher for peanut anaphylaxis (67% vs. 54%; p = .004). Conclusions The European Anaphylaxis Registry data confirmed peanut as one of the major causes of severe, potentially life-threatening allergic reactions in European children, with some characteristic features e.g., presence of asthma comorbidity and increased rate of biphasic reactions. Usage of intramuscular adrenaline as first-line treatment is low and needs to be improved. The Registry, designed as the largest database on anaphylaxis, allows continuous assessment of this condition

    A randomized open label phase-II clinical trial with or without infusion of plasma from subjects after convalescence of SARS-CoV-2 infection in high-risk patients with confirmed severe SARS-CoV-2 disease (RECOVER): a structured summary of a study protocol for a randomised controlled trial

    Get PDF
    OBJECTIVES: Primary objectives • To assess the time from randomisation until an improvement within 84 days defined as two points on a seven point ordinal scale or live discharge from the hospital in high-risk patients (group 1 to group 4) with SARS-CoV-2 infection requiring hospital admission by infusion of plasma from subjects after convalescence of SARS-CoV-2 infection or standard of care. Secondary objectives • To assess overall survival, and the overall survival rate at 28 56 and 84 days. • To assess SARS-CoV-2 viral clearance and load as well as antibody titres. • To assess the percentage of patients that required mechanical ventilation. • To assess time from randomisation until discharge. TRIAL DESIGN: Randomised, open-label, multicenter phase II trial, designed to assess the clinical outcome of SARS-CoV-2 disease in high-risk patients (group 1 to group 4) following treatment with anti-SARS-CoV-2 convalescent plasma or standard of care. PARTICIPANTS: High-risk patients >18 years of age hospitalized with SARS-CoV-2 infection in 10-15 university medical centres will be included. High-risk is defined as SARS-CoV-2 positive infection with Oxygen saturation at ≤ 94% at ambient air with additional risk features as categorised in 4 groups: • Group 1, pre-existing or concurrent hematological malignancy and/or active cancer therapy (incl. chemotherapy, radiotherapy, surgery) within the last 24 months or less. • Group 2, chronic immunosuppression not meeting the criteria of group 1. • Group 3, age ≥ 50 - 75 years meeting neither the criteria of group 1 nor group 2 and at least one of these criteria: Lymphopenia 1μg/mL. • Group 4, age ≥ 75 years meeting neither the criteria of group 1 nor group 2. Observation time for all patients is expected to be at least 3 months after entry into the study. Patients receive convalescent plasma for two days (day 1 and day 2) or standard of care. For patients in the standard arm, cross over is allowed from day 10 in case of not improving or worsening clinical condition. Nose/throat swabs for determination of viral load are collected at day 0 and day 1 (before first CP administration) and subsequently at day 2, 3, 5, 7, 10, 14, 28 or until discharge. Serum for SARS-Cov-2 diagnostic is collected at baseline and subsequently at day 3, 7, 14 and once during the follow-up period (between day 35 and day 84). There is a regular follow-up of 3 months. All discharged patients are followed by regular phone calls. All visits, time points and study assessments are summarized in the Trial Schedule (see full protocol Table 1). All participating trial sites will be supplied with study specific visit worksheets that list all assessments and procedures to be completed at each visit. All findings including clinical and laboratory data are documented by the investigator or an authorized member of the study team in the patient's medical record and in the electronic case report forms (eCRFs). INTERVENTION AND COMPARATOR: This trial will analyze the effects of convalescent plasma from recovered subjects with SARS-CoV-2 antibodies in high-risk patients with SARS-CoV-2 infection. Patients at high risk for a poor outcome due to underlying disease, age or condition as listed above are eligible for enrollment. In addition, eligible patients have a confirmed SARS-CoV-2 infection and O2 saturation ≤ 94% while breathing ambient air. Patients are randomised to receive (experimental arm) or not receive (standard arm) convalescent plasma in two bags (238 - 337 ml plasma each) from different donors (day 1, day 2). A cross over from the standard arm into the experimental arm is possible after day 10 in case of not improving or worsening clinical condition. MAIN OUTCOMES: Primary endpoints: The main purpose of the study is to assess the time from randomisation until an improvement within 84 days defined as two points on a seven-point ordinal scale or live discharge from the hospital in high-risk patients (group 1 to group 4) with SARS-CoV-2 infection requiring hospital admission by infusion of plasma from subjects after convalescence of a SARS-CoV-2 infection or standard of care. Secondary endpoints: • Overall survival, defined as the time from randomisation until death from any cause 28-day, 56-day and 84-day overall survival rates. • SARS-CoV-2 viral clearance and load as well as antibody titres. • Requirement mechanical ventilation at any time during hospital stay (yes/no). • Time until discharge from randomisation. • Viral load, changes in antibody titers and cytokine profiles are analysed in an exploratory manner using paired non-parametric tests (before - after treatment). RANDOMISATION: Upon confirmation of eligibility (patients must meet all inclusion criteria and must not meet exclusion criteria described in section 5.3 and 5.4 of the full protocol), the clinical site must contact a centralized internet randomization system ( https://randomizer.at/ ). Patients are randomized using block randomisation to one of the two arms, experimental arm or standard arm, in a 1:1 ratio considering a stratification according to the 4 risk groups (see Participants). BLINDING (MASKING): The study is open-label, no blinding will be performed. NUMBERS TO BE RANDOMISED (SAMPLE SIZE): A total number of 174 patients is required for the entire trial, n=87 per group. TRIAL STATUS: Protocol version 1.2 dated 09/07/2020. A recruitment period of approximately 9 months and an overall study duration of approximately 12 months is anticipated. Recruitment of patients starts in the third quarter of 2020. The study duration of an individual patient is planned to be 3 months. After finishing all study-relevant procedures, therapy, and follow-up period, the patient is followed in terms of routine care and treated if necessary. Total trial duration: 18 months Duration of the clinical phase: 12 months First patient first visit (FPFV): 3rd Quarter 2020 Last patient first visit (LPFV): 2nd Quarter 2021 Last patient last visit (LPLV): 3rd Quarter 2021 Trial Report completed: 4th Quarter 2021 TRIAL REGISTRATION: EudraCT Number: 2020-001632-10, https://www.clinicaltrialsregister.eu/ctr-search/trial/2020-001632-10/DE , registered on 04/04/2020. FULL PROTOCOL: The full protocol is attached as an additional file, accessible from the Trials website (Additional file 1). In the interest in expediting dissemination of this material, the familiar formatting has been eliminated; this Letter serves as a summary of the key elements of the full protocol. The study protocol has been reported in accordance with the Standard Protocol Items: Recommendations for Clinical Interventional Trials (SPIRIT) guidelines (Additional file 2). The eCRF is attached (Additional file 3)

    Phenotypic and functional analysis of monocyte populations in cattle peripheral blood identifies a subset with high endocytic and allogeneic T-cell stimulatory capacity

    Get PDF
    International audienceAbstractCirculating monocytes in several mammalian species can be subdivided into functionally distinct subpopulations based on differential expression of surface molecules. We confirm that bovine monocytes express CD172a and MHC class II with two distinct populations of CD14+CD16low/-CD163+ and CD14−CD16++CD163low- cells, and a more diffuse population of CD14+CD16+CD163+ cells. In contrast, ovine monocytes consisted of only a major CD14+CD16+ subset and a very low percentage of CD14−CD16++cells. The bovine subsets expressed similar levels of CD80, CD40 and CD11c molecules and mRNA encoding CD115. However, further mRNA analyses revealed that the CD14−CD16++ monocytes were CX3CR1highCCR2low whereas the major CD14+ subset was CX3CR1lowCCR2high. The former were positive for CD1b and had lower levels of CD11b and CD86 than the CD14+ monocytes. The more diffuse CD14+CD16+ population generally expressed intermediate levels of these molecules. All three populations responded to stimulation with phenol-extracted lipopolysaccharide (LPS) by producing interleukin (IL)-1β, with the CD16++ subset expressing higher levels of IL-12 and lower levels of IL-10. The CD14−CD16++ cells were more endocytic and induced greater allogeneic T cell responses compared to the other monocyte populations. Taken together the data show both similarities and differences between the classical, intermediate and non-classical definitions of monocytes as described for other mammalian species, with additional potential subpopulations. Further functional analyses of these monocyte populations may help explain inter-animal and inter-species variations to infection, inflammation and vaccination in ruminant livestock

    Anti-SARS-CoV-2 antibody-containing plasma improves outcome in patients with hematologic or solid cancer and severe COVID-19: a randomized clinical trial

    Get PDF
    Patients with cancer are at high risk of severe coronavirus disease 2019 (COVID-19), with high morbidity and mortality. Furthermore, impaired humoral response renders severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines less effective and treatment options are scarce. Randomized trials using convalescent plasma are missing for high-risk patients. Here, we performed a randomized, open-label, multicenter trial (https://www.clinicaltrialsregister.eu/ctr-search/trial/2020-001632-10/DE) in hospitalized patients with severe COVID-19 (n = 134) within four risk groups ((1) cancer (n = 56); (2) immunosuppression (n = 16); (3) laboratory-based risk factors (n = 36); and (4) advanced age (n = 26)) randomized to standard of care (control arm) or standard of care plus convalescent/vaccinated anti-SARS-CoV-2 plasma (plasma arm). No serious adverse events were observed related to the plasma treatment. Clinical improvement as the primary outcome was assessed using a seven-point ordinal scale. Secondary outcomes were time to discharge and overall survival. For the four groups combined, those receiving plasma did not improve clinically compared with those in the control arm (hazard ratio (HR) = 1.29; P = 0.205). However, patients with cancer experienced a shortened median time to improvement (HR = 2.50; P = 0.003) and superior survival with plasma treatment versus the control arm (HR = 0.28; P = 0.042). Neutralizing antibody activity increased in the plasma cohort but not in the control cohort of patients with cancer (P = 0.001). Taken together, convalescent/vaccinated plasma may improve COVID-19 outcomes in patients with cancer who are unable to intrinsically generate an adequate immune response
    corecore