168 research outputs found
Dynamics of photo-activated Coulomb complexes
Intense light with frequencies above typical atomic or molecular ionization
potentials as provided by free-electron lasers couples many photons into
extended targets such as clusters and biomolecules. This implies, in contrast
to traditional multi-photon ionization, multiple single-photon absorption.
Thereby, many electrons are removed from their bound states and either released
or trapped if the target charge has become sufficiently large. We develop a
simple model for this photo activation to study electron migration and
interaction. It satisfies scaling relations which help to relate quite
different scenarios. To understand this type of multi-electron dynamics on very
short time scales is vital for assessing the radiation damage inflicted by that
type of radiation and to pave the way for coherent diffraction imaging of
single molecules.Comment: 14 pages, 6 figures, 1 tabl
Multiple ionization of neon by soft X-rays at ultrahigh intensity
At the free-electron laser FLASH, multiple ionization of neon atoms was
quantitatively investigated at 93.0 eV and 90.5 eV photon energy. For ion
charge states up to 6+, we compare the respective absolute photoionization
yields with results from a minimal model and an elaborate description. Both
approaches are based on rate equations and take into acccout a Gaussian spatial
intensity distribution of the laser beam. From the comparison we conclude, that
photoionization up to a charge of 5+ can be described by the minimal model. For
higher charges, the experimental ionization yields systematically exceed the
elaborate rate based prediction.Comment: 10 pages, 3 figure
The >494 Ma Lillevik ophiolite fragment (Gratangseidet Igneous Complex) near Narvik, Scandinavian Caledonides
No embargo required
Excitation and relaxation in atom-cluster collisions
Electronic and vibrational degrees of freedom in atom-cluster collisions are
treated simultaneously and self-consistently by combining time-dependent
density functional theory with classical molecular dynamics. The gradual change
of the excitation mechanisms (electronic and vibrational) as well as the
related relaxation phenomena (phase transitions and fragmentation) are studied
in a common framework as a function of the impact energy (eV...MeV). Cluster
"transparency" characterized by practically undisturbed atom-cluster
penetration is predicted to be an important reaction mechanism within a
particular window of impact energies.Comment: RevTeX (4 pages, 4 figures included with epsf
Was Baltica part of Rodinia?
Late Ediacaran opening of the Iapetus Ocean is typically considered to reflect separation of Baltica and Laurentia during final breakup of the Rodinia supercontinent, with subsequent closure during the Caledonian Orogeny. However, evidence of the pre-opening juxtaposition of Baltica and Laurentia is limited to purportedly similar apparent polar wander paths and correlation of Rodinia-forming orogenic events. We show that a range of existing data do not unequivocally support correlation of these orogens, and that geologic and palaeomagnetic data instead favour separation of Baltica and Laurentia as early as 1.1–1.2 Ga. Furthermore, new detrital zircon U–Pb age and Ar–Ar thermochronological data from Norway point towards an active western Baltican margin throughout most of the Neoproterozoic and early Palaeozoic. These findings are inconsistent with the majority of palaeogeographic reconstructions that place Baltica near the core of the Rodinia supercontinent
Laser-Cluster-Interaction in a Nanoplasma-Model with Inclusion of Lowered Ionization Energies
The interaction of intense laser fields with silver and argon clusters is
investigated theoretically using a modified nanoplasma model. Single pulse and
double pulse excitations are considered. The influence of the dense cluster
environment on the inner ionization processes is studied including the lowering
of the ionization energies. There are considerable changes in the dynamics of
the laser-cluster interaction. Especially, for silver clusters, the lowering of
the ionization energies leads to increased yields of highly charged ions.Comment: 10 pages, 11 figure
Dynamical ionization ignition of clusters in intense and short laser pulses
The electron dynamics of rare gas clusters in laser fields is investigated
quantum mechanically by means of time-dependent density functional theory. The
mechanism of early inner and outer ionization is revealed. The formation of an
electron wave packet inside the cluster shortly after the first removal of a
small amount of electron density is observed. By collisions with the cluster
boundary the wave packet oscillation is driven into resonance with the laser
field, hence leading to higher absorption of laser energy. Inner ionization is
increased because the electric field of the bouncing electron wave packet adds
up constructively to the laser field. The fastest electrons in the wave packet
escape from the cluster as a whole so that outer ionization is increased as
well.Comment: 8 pages, revtex4, PDF-file with high resolution figures is available
from http://mitarbeiter.mbi-berlin.de/bauer/publist.html, publication no. 24.
Accepted for publication in Phys. Rev.
Locomotion modulates specific functional cell types in the mouse visual thalamus
The visual system is composed of diverse cell types that encode distinct aspects of the visual scene and may form separate processing channels. Here we present further evidence for that hypothesis whereby functional cell groups in the dorsal lateral geniculate nucleus (dLGN) are differentially modulated during behavior. Using simultaneous multi-electrode recordings in dLGN and primary visual cortex (V1) of behaving mice, we characterized the impact of locomotor activity on response amplitude, variability, correlation and spatiotemporal tuning. Locomotion strongly impacts the amplitudes of dLGN and V1 responses but the effects on variability and correlations are relatively minor. With regards to tunings, locomotion enhances dLGN responses to high temporal frequencies, preferentially affecting ON transient cells and neurons with nonlinear responses to high spatial frequencies. Channel specific modulations may serve to highlight particular visual inputs during active behaviors
Atypical Balance between Occipital and Fronto-Parietal Activation for Visual Shape Extraction in Dyslexia
Reading requires the extraction of letter shapes from a complex background of text, and an impairment in visual shape extraction would cause difficulty in reading. To investigate the neural mechanisms of visual shape extraction in dyslexia, we used functional magnetic resonance imaging (fMRI) to examine brain activation while adults with or without dyslexia responded to the change of an arrow’s direction in a complex, relative to a simple, visual background. In comparison to adults with typical reading ability, adults with dyslexia exhibited opposite patterns of atypical activation: decreased activation in occipital visual areas associated with visual perception, and increased activation in frontal and parietal regions associated with visual attention. These findings indicate that dyslexia involves atypical brain organization for fundamental processes of visual shape extraction even when reading is not involved. Overengagement in higher-order association cortices, required to compensate for underengagment in lower-order visual cortices, may result in competition for top-down attentional resources helpful for fluent reading.Ellison Medical FoundationMartin Richmond Memorial FundNational Institutes of Health (U.S.). (Grant UL1RR025758)National Institutes of Health (U.S.). (Grant F32EY014750-01)MIT Class of 1976 (Funds for Dyslexia Research
Interaction between Attention and Bottom-Up Saliency Mediates the Representation of Foreground and Background in an Auditory Scene
Bottom-up (stimulus-driven) and top-down (attentional) processes interact when a complex acoustic scene is parsed. Both modulate the neural representation of the target in a manner strongly correlated with behavioral performance
- …