443 research outputs found

    Comparative study of in vitro antioxidant activity of foliar endophytic fungi and leaves extracts of Peganum harmala of Dayate aiat (Laghouat, Algeria)

    Get PDF
    Endophytic fungi that reside in plant tissues are a potential source of secondary metabolites with biological activities. In our study, we investigated the detection of the antioxidant activity of the crude fungal extract of the genera Cladosporium, Alternaria, Aspergillus and Penicillium: endophytic fungi isolated from the leaves of Peganum harmala harvested in Laghouat and extract of these same leaves. The extraction of these metabolites was carried out using ethyl acetate. The antioxidant activity of the latter was carried out by the DPPH test. Our tests reveal that the extracts studied have a low antioxidant activity. The inhibitory concentrations show a higher antioxidant effect for the Penicillium extract compared to the other extracts studied. The antioxidant molecules are related to the content of polyphenols. Penicillium extract has the highest polyphenol content. Our results confirm that endophytic fungi are a potential and limited source of natural antioxidant compounds, in the same way as plants.Key words: Leaf extract; Extracts of endophytic fungi; Antioxidant activity; Content ofpolyphenols and Peganum harmala

    Aquaporin-4 and brain edema.

    Get PDF
    Aquaporin-4 (AQP4) is a water-channel protein expressed strongly in the brain, predominantly in astrocyte foot processes at the borders between the brain parenchyma and major fluid compartments, including cerebrospinal fluid (CSF) and blood. This distribution suggests that AQP4 controls water fluxes into and out of the brain parenchyma. Experiments using AQP4-null mice provide strong evidence for AQP4 involvement in cerebral water balance. AQP4-null mice are protected from cellular (cytotoxic) brain edema produced by water intoxication, brain ischemia, or meningitis. However, AQP4 deletion aggravates vasogenic (fluid leak) brain edema produced by tumor, cortical freeze, intraparenchymal fluid infusion, or brain abscess. In cytotoxic edema, AQP4 deletion slows the rate of water entry into brain, whereas in vasogenic edema, AQP4 deletion reduces the rate of water outflow from brain parenchyma. AQP4 deletion also worsens obstructive hydrocephalus. Recently, AQP4 was also found to play a major role in processes unrelated to brain edema, including astrocyte migration and neuronal excitability. These findings suggest that modulation of AQP4 expression or function may be beneficial in several cerebral disorders, including hyponatremic brain edema, hydrocephalus, stroke, tumor, infection, epilepsy, and traumatic brain injury

    Neuromyelitis optica MOG-IgG causes reversible lesions in mouse brain.

    Get PDF
    INTRODUCTION: Antibodies against myelin oligodendrocyte glycoprotein (MOG-IgG) are present in some neuromyelitis optica patients who lack antibodies against aquaporin-4 (AQP4-IgG). The effects of neuromyelitis optica MOG-IgG in the central nervous system have not been investigated in vivo. We microinjected MOG-IgG, obtained from patients with neuromyelitis optica, into mouse brains and compared the results with AQP4-IgG. RESULTS: MOG-IgG caused myelin changes and altered the expression of axonal proteins that are essential for action potential firing, but did not produce inflammation, axonal loss, neuronal or astrocyte death. These changes were independent of complement and recovered within two weeks. By contrast, AQP4-IgG produced complement-mediated myelin loss, neuronal and astrocyte death with limited recovery at two weeks. CONCLUSIONS: These differences mirror the better outcomes for MOG-IgG compared with AQP4-IgG patients and raise the possibility that MOG-IgG contributes to pathology in some neuromyelitis optica patients

    Neuromyelitis optica MOG-IgG causes reversible lesions in mouse brain.

    Get PDF
    INTRODUCTION: Antibodies against myelin oligodendrocyte glycoprotein (MOG-IgG) are present in some neuromyelitis optica patients who lack antibodies against aquaporin-4 (AQP4-IgG). The effects of neuromyelitis optica MOG-IgG in the central nervous system have not been investigated in vivo. We microinjected MOG-IgG, obtained from patients with neuromyelitis optica, into mouse brains and compared the results with AQP4-IgG. RESULTS: MOG-IgG caused myelin changes and altered the expression of axonal proteins that are essential for action potential firing, but did not produce inflammation, axonal loss, neuronal or astrocyte death. These changes were independent of complement and recovered within two weeks. By contrast, AQP4-IgG produced complement-mediated myelin loss, neuronal and astrocyte death with limited recovery at two weeks. CONCLUSIONS: These differences mirror the better outcomes for MOG-IgG compared with AQP4-IgG patients and raise the possibility that MOG-IgG contributes to pathology in some neuromyelitis optica patients

    Effects of local hypothermia-rewarming on physiology, metabolism and inflammation of acutely injured human spinal cord.

    Get PDF
    In five patients with acute, severe thoracic traumatic spinal cord injuries (TSCIs), American spinal injuries association Impairment Scale (AIS) grades A-C, we induced cord hypothermia (33 °C) then rewarming (37 °C). A pressure probe and a microdialysis catheter were placed intradurally at the injury site to monitor intraspinal pressure (ISP), spinal cord perfusion pressure (SCPP), tissue metabolism and inflammation. Cord hypothermia-rewarming, applied to awake patients, did not cause discomfort or neurological deterioration. Cooling did not affect cord physiology (ISP, SCPP), but markedly altered cord metabolism (increased glucose, lactate, lactate/pyruvate ratio (LPR), glutamate; decreased glycerol) and markedly reduced cord inflammation (reduced IL1β, IL8, MCP, MIP1α, MIP1β). Compared with pre-cooling baseline, rewarming was associated with significantly worse cord physiology (increased ICP, decreased SCPP), cord metabolism (increased lactate, LPR; decreased glucose, glycerol) and cord inflammation (increased IL1β, IL8, IL4, IL10, MCP, MIP1α). The study was terminated because three patients developed delayed wound infections. At 18-months, two patients improved and three stayed the same. We conclude that, after TSCI, hypothermia is potentially beneficial by reducing cord inflammation, though after rewarming these benefits are lost due to increases in cord swelling, ischemia and inflammation. We thus urge caution when using hypothermia-rewarming therapeutically in TSCI

    Optomagnetic composite medium with conducting nanoelements

    Full text link
    A new type of metal-dielectric composites has been proposed that is characterised by a resonance-like behaviour of the effective permeability in the infrared and visible spectral ranges. This material can be referred to as optomagnetic medium. The analytical formalism developed is based on solving the scattering problem for considered inclusions with impedance boundary condition, which yields the current and charge distributions within the inclusions. The presence of the effective magnetic permeability and its resonant properties lead to novel optical effects and open new possible applications.Comment: 48 pages, 13 figures. accepted to Phys. Rev. B; to appear vol. 66, 200

    Spinal Cord Perfusion Pressure Correlates with Anal Sphincter Function in a Cohort of Patients with Acute, Severe Traumatic Spinal Cord Injuries.

    Get PDF
    BACKGROUND: Acute, severe traumatic spinal cord injury often causes fecal incontinence. Currently, there are no treatments to improve anal function after traumatic spinal cord injury. Our study aims to determine whether, after traumatic spinal cord injury, anal function can be improved by interventions in the neuro-intensive care unit to alter the spinal cord perfusion pressure at the injury site. METHODS: We recruited a cohort of patients with acute, severe traumatic spinal cord injuries (American Spinal Injury Association Impairment Scale grades A-C). They underwent surgical fixation within 72 h of the injury and insertion of an intrathecal pressure probe at the injury site to monitor intraspinal pressure and compute spinal cord perfusion pressure as mean arterial pressure minus intraspinal pressure. Injury-site monitoring was performed at the neuro-intensive care unit for up to a week after injury. During monitoring, anorectal manometry was also conducted over a range of spinal cord perfusion pressures. RESULTS: Data were collected from 14 patients with consecutive traumatic spinal cord injury aged 22-67 years. The mean resting anal pressure was 44 cmH2O, which is considerably lower than the average for healthy patients, previously reported at 99 cmH2O. Mean resting anal pressure versus spinal cord perfusion pressure had an inverted U-shaped relation (Ȓ2 = 0.82), with the highest resting anal pressures being at a spinal cord perfusion pressure of approximately 100 mmHg. The recto-anal inhibitory reflex (transient relaxation of the internal anal sphincter during rectal distension), which is important for maintaining fecal continence, was present in 90% of attempts at high (90 mmHg) spinal cord perfusion pressure versus 70% of attempts at low (60 mmHg) spinal cord perfusion pressure (P < 0.05). During cough, the rise in anal pressure from baseline was 51 cmH2O at high (86 mmHg) spinal cord perfusion pressure versus 37 cmH2O at low (62 mmHg) spinal cord perfusion pressure (P < 0.0001). During anal squeeze, higher spinal cord perfusion pressure was associated with longer endurance time and spinal cord perfusion pressure of 70-90 mmHg was associated with stronger squeeze. There were no complications associated with anorectal manometry. CONCLUSIONS: Our data indicate that spinal cord injury causes severe disruption of anal sphincter function. Several key components of anal continence (resting anal pressure, recto-anal inhibitory reflex, and anal pressure during cough and squeeze) markedly improve at higher spinal cord perfusion pressure. Maintaining too high of spinal cord perfusion pressure may worsen anal continence

    Aquaporin water channels in the nervous system.

    Get PDF
    The aquaporins (AQPs) are plasma membrane water-transporting proteins. AQP4 is the principal member of this protein family in the CNS, where it is expressed in astrocytes and is involved in water movement, cell migration and neuroexcitation. AQP1 is expressed in the choroid plexus, where it facilitates cerebrospinal fluid secretion, and in dorsal root ganglion neurons, where it tunes pain perception. The AQPs are potential drug targets for several neurological conditions. Astrocytoma cells strongly express AQP4, which may facilitate their infiltration into the brain, and the neuroinflammatory disease neuromyelitis optica is caused by AQP4-specific autoantibodies that produce complement-mediated astrocytic damage

    Photonic Analogue of Two-dimensional Topological Insulators and Helical One-Way Edge Transport in Bi-Anisotropic Metamaterials

    Full text link
    Recent progress in understanding the topological properties of condensed matter has led to the discovery of time-reversal invariant topological insulators. Because of limitations imposed by nature, topologically non-trivial electronic order seems to be uncommon except in small-band-gap semiconductors with strong spin-orbit interactions. In this Article we show that artificial electromagnetic structures, known as metamaterials, provide an attractive platform for designing photonic analogues of topological insulators. We demonstrate that a judicious choice of the metamaterial parameters can create photonic phases that support a pair of helical edge states, and that these edge states enable one-way photonic transport that is robust against disorder.Comment: 13 pages, 3 figure

    A Novel Role for Aquaporin-5 in Enhancing Microtubule Organization and Stability

    Get PDF
    Aquaporin-5 (AQP5) is a water-specific channel located on the apical surface of airway epithelial cells. In addition to regulating transcellular water permeability, AQP5 can regulate paracellular permeability, though the mechanisms by which this occurs have not been determined. Microtubules also regulate paracellular permeability. Here, we report that AQP5 promotes microtubule assembly and helps maintain the assembled microtubule steady state levels with slower turnover dynamics in cells. Specifically, reduced levels of AQP5 correlated with lower levels of assembled microtubules and decreased paracellular permeability. In contrast, overexpression of AQP5 increased assembly of microtubules, with evidence of increased MT stability, and promoted the formation of long straight microtubules in the apical domain of the epithelial cells. These findings indicate that AQP5-mediated regulation of microtubule dynamics modulates airway epithelial barrier properties and epithelial function
    • …
    corecore