26,687 research outputs found

    BANKING SECTOR REFORMS AND EQUITY - A SUB-REGIONAL ANALYSIS IN ANDHRA PRADESH

    Get PDF
    The changes in government policies are continuous to correct the ill effects of its earlier policies. In this study an attempt is made to examine the equity aspect due to reforms in the banking sector at sub-regional level in the state of Andhra Pradesh covering the period 1985 to 2004. The analysis indicates that the share of rural areas in number of branches, number of accounts, deposits and credit declined during pre and post liberalisation periods. Despite declining shares in most of the parameters especially those of credit and deposits, there is positive growth in both the periods. However, the growth of these parameters is more in urban areas. The distribution of credit among the sectors indicates that the share of agricultural sector in accounts and credit declined during pre and post liberalisation periods. The share of agricultural credit declined in all the regions during pre and post liberalisation periods. This is true with respect to credit and number of credit accounts. In the case of other sectors, the share in accounts and credit increased in both the periods. Though, the share in the agriculture sector declined in all the regions, per account credit increased in all the regions during both the periods. It may be concluded that liberalisation has increased inequalities. But the rate of increase in inequalities is arrested to a certain extent in the recent past. But if one looks at the growth of credit given to different sectors and growth of credit in rural and urban areas, one may not come to this kind of conclusion.Banking Sector Reforms, Equity, Andhra Pradesh

    A finite element solver for 3-D compressible viscous flows

    Get PDF
    Computation of the flow field inside a space shuttle main engine (SSME) requires the application of state of the art computational fluid dynamic (CFD) technology. Several computer codes are under development to solve 3-D flow through the hot gas manifold. Some algorithms were designed to solve the unsteady compressible Navier-Stokes equations, either by implicit or explicit factorization methods, using several hundred or thousands of time steps to reach a steady state solution. A new iterative algorithm is being developed for the solution of the implicit finite element equations without assembling global matrices. It is an efficient iteration scheme based on a modified nonlinear Gauss-Seidel iteration with symmetric sweeps. The algorithm is analyzed for a model equation and is shown to be unconditionally stable. Results from a series of test problems are presented. The finite element code was tested for couette flow, which is flow under a pressure gradient between two parallel plates in relative motion. Another problem that was solved is viscous laminar flow over a flat plate. The general 3-D finite element code was used to compute the flow in an axisymmetric turnaround duct at low Mach numbers

    Gap solitons with null-scattering

    Full text link
    We study excitation of gap solitons under the conditions of coherent perfect absorption (CPA). Our system consists of a symmetric periodic structure with alternating Kerr nonlinear and linear layers, illuminated from both the ends. We show near-total transfer of incident light energy into the gap solitons resulting in null-scattering. We also report on the nonlinear super-scattering (SS) states. Both the CPA and the SS states are shown to be characterized by typical field distributions. Both the exact and the approximate results (based on nonlinear characteristic matrix method) are presented, which show good agreement

    Cavity controlled spectral singularity

    Full text link
    We study theoretically a PT-symmetric saturable balanced gain-loss system in a ring cavity configuration. The saturable gain and loss are modeled by two-level medium with or without population inversion. We show that the specifics of the spectral singularity can be fully controlled by the cavity and the atomic detuning parameters. The theory is based on the mean-field approximation as in standard theory of optical bistability. Further, in the linear regime we demonstrate the regularization of the singularity in detuned systems, while larger input power levels are shown to be adequate to limit the infinite growth in absence of detunin

    A time delay controller for magnetic bearings

    Get PDF
    The control of systems with unknown dynamics and unpredictable disturbances has raised some challenging problems. This is particularly important when high system performance needs to be guaranteed at all times. Recently, the Time Delay Control has been suggested as an alternative control scheme. The proposed control system does not require an explicit plant model nor does it depend on the estimation of specific plant parameters. Rather, it combines adaptation with past observations to directly estimate the effect of the plant dynamics. A control law is formulated for a class of dynamic systems and a sufficient condition is presented for control systems stability. The derivation is based on the bounded input-bounded output stability approach using L sub infinity function norms. The control scheme is implemented on a five degrees of freedom high speed and high precision magnetic bearing. The control performance is evaluated using step responses, frequency responses, and disturbance rejection properties. The experimental data show an excellent control performance despite the system complexity

    Electron paramagnetic resonance, optical absorption and Raman spectral studies on a pyrite/chalcopyrite mineral

    Get PDF
    Pyrite and chalcopyrite mineral samples from Mangampet barite mine, Kadapa, Andhra Pradesh, India are used in the present study. XRD data indicate that the pyrite mineral has a face centered cubic lattice structure with lattice constant 5.4179 Å. Also it possesses an average particle size of 91.9 nm. An EPR study on the powdered samples confirms the presence of iron in pyrite and iron and Mn(II) in chalcopyrite. The optical absorption spectrum of chalcopyrite indicates presence of copper which is in a distorted octahedral environment. NIR results confirm the presence of water fundamentals and Raman spectrum reveals the presence of water and sulfate ions

    The role of shear in dissipative gravitational collapse

    Full text link
    In this paper we investigate the physics of a radiating star undergoing dissipative collapse in the form of a radial heat flux. Our treatment clearly demonstrates how the presence of shear affects the collapse process; we are in a position to contrast the physical features of the collapsing sphere in the presence of shear with the shear-free case. By employing a causal heat transport equation of the Maxwell-Cattaneo form we show that the shear leads to an enhancement of the core temperature thus emphasizing that relaxational effects cannot be ignored when the star leaves hydrostatic equilibrium.Comment: 15 pages, To appear in Int. J. Mod. Phys.

    Bulk viscosity of spin-one color superconducting strange quark matter

    Full text link
    The bulk viscosity in spin-one color-superconducting strange quark matter is calculated by taking into account the interplay between the nonleptonic and semi-leptonic week processes. In agreement with previous studies, it is found that the inclusion of the semi-leptonic processes may result in non-negligible corrections to the bulk viscosity in a narrow window of temperatures. The effect is generally more pronounced for pulsars with longer periods. Compared to the normal phase, however, this effect due to the semi-leptonic processes is less pronounced in spin-one color superconductors. Assuming that the critical temperature of the phase transition is much larger than 40 keV, the main effect of spin-one color superconductivity in a wide range of temperatures is an overall increase of the bulk viscosity with respect to the normal phase. The corresponding enhancement factor reaches up to about 9 in the polar and A-phases, about 25 in the planar phase and about 29 in the CSL phase. This factor is determined by the suppression of the nonleptonic rate in color-superconducting matter and, therefore, may be even larger if all quark quasiparticles happen to be gapped.Comment: 10 pages, 4 multi-panel figures, including one new in the final versio
    corecore