2,226 research outputs found

    Star Polymers Confined in a Nanoslit: A Simulation Test of Scaling and Self-Consistent Field Theories

    Get PDF
    The free energy cost of confining a star polymer where ff flexible polymer chains containing NN monomeric units are tethered to a central unit in a slit with two parallel repulsive walls a distance DD apart is considered, for good solvent conditions. Also the parallel and perpendicular components of the gyration radius of the star polymer, and the monomer density profile across the slit are obtained. Theoretical descriptions via Flory theory and scaling treatments are outlined, and compared to numerical self-consistent field calculations (applying the Scheutjens-Fleer lattice theory) and to Molecular Dynamics results for a bead-spring model. It is shown that Flory theory and self-consistent field (SCF) theory yield the correct scaling of the parallel linear dimension of the star with NN, ff and DD, but cannot be used for estimating the free energy cost reliably. We demonstrate that the same problem occurs already for the confinement of chains in cylindrical tubes. We also briefly discuss the problem of a free or grafted star polymer interacting with a single wall, and show that the dependence of confining force on the functionality of the star is different for a star confined in a nanoslit and a star interacting with a single wall, which is due to the absence of a symmetry plane in the latter case.Comment: 15 pages, 9 figures, LaTeX, to appear in Soft Matte

    Multi-domain active sound control and noise shielding

    Get PDF
    This paper describes an active sound control methodology based on difference potentials. The main feature of this methodology is its ability to automatically preserve “wanted” sound within a domain while canceling “unwanted” noise from outside the domain. This method of preservation of the wanted sounds by active shielding control is demonstrated with various broadband and realistic sound sources such as human voice and music in multiple domains in a one-dimensional enclosure. Unlike many other conventional active control methods, the proposed approach does not require the explicit characterization of the wanted sound to be preserved. The controls are designed based on the measurements of the total field on the boundaries of the shielded domain only, which is allowed to be multiply connected. The method is tested in a variety of experimental cases. The typical attenuation of the unwanted noise is found to be about 20 dB over a large area of the shielded domain and the original wanted sound field is preserved with errors of around 1 dB and below through a broad frequency range up to 1 kHz. © 2011 Acoustical Society of Americ

    Absorption/Expulsion of Oligomers and Linear Macromolecules in a Polymer Brush

    Full text link
    The absorption of free linear chains in a polymer brush was studied with respect to chain size LL and compatibility χ\chi with the brush by means of Monte Carlo (MC) simulations and Density Functional Theory (DFT) / Self-Consistent Field Theory (SCFT) at both moderate, σg=0.25\sigma_g = 0.25, and high, σg=1.00\sigma_g = 1.00, grafting densities using a bead-spring model. Different concentrations of the free chains 0.0625ϕo0.3750.0625 \le \phi_o \le 0.375 are examined. Contrary to the case of χ=0\chi = 0 when all species are almost completely ejected by the polymer brush irrespective of their length LL, for χ<0\chi < 0 we find that the degree of absorption (absorbed amount) Γ(L)\Gamma(L) undergoes a sharp crossover from weak to strong (100\approx 100%) absorption, discriminating between oligomers, 1L81\le L\le 8, and longer chains. For a moderately dense brush, σg=0.25\sigma_g = 0.25, the longer species, L>8L > 8, populate predominantly the deep inner part of the brush whereas in a dense brush σg=1.00\sigma_g = 1.00 they penetrate into the "fluffy" tail of the dense brush only. Gyration radius RgR_g and end-to-end distance ReR_e of absorbed chains thereby scale with length LL as free polymers in the bulk. Using both MC and DFT/SCFT methods for brushes of different chain length 32N25632 \le N \le 256, we demonstrate the existence of unique {\em critical} value of compatibility χ=χc<0\chi = \chi^{c}<0. For χc(ϕo)\chi^{c}(\phi_o) the energy of free chains attains the {\em same} value, irrespective of length LL whereas the entropy of free chain displays a pronounced minimum. At χc\chi^{c} all density profiles of absorbing chains with different LL intersect at the same distance from the grafting plane. The penetration/expulsion kinetics of free chains into the polymer brush after an instantaneous change in their compatibility χ\chi displays a rather rich behavior. We find three distinct regimes of penetration kinetics of free chains regarding the length LL: I (1L81\le L\le 8), II (8LN8 \le L \le N), and III (L>NL > N), in which the time of absorption τ\tau grows with LL at a different rate. During the initial stages of penetration into the brush one observes a power-law increase of Γtα\Gamma \propto t^\alpha with power αlnϕo\alpha \propto -\ln \phi_o whereby penetration of the free chains into the brush gets {\em slower} as their concentration rises

    Enhanced CD8+ T-cell response in mice immunized with NS1-truncated influenza virus

    Get PDF
    Influenza viruses with truncated NS1 protein stimulate a more intensive innate immune response compared to their wild type counterparts. Here, we investigate how the shortening of the NS1 protein influence the immunogenicity of the conserved T-cellular epitopes of influenza virus. Using flow cytometry, we showed that the intraperitoneal immunization of mice with influenza virus encoding 124 N-terminal amino acid residues of the NS1 protein (A/PR8/NS124) induced higher levels of CD8+ T-cells recognizing immunodominant (NP366-374) and sub-immunodominant (NP161-175, NP196-210, HA323-337, HA474-483, NA427-433) epitopes compared to immunization with the virus expressing full-length NS1 (A/PR8/full NS). It is noteworthy that the response to the immunodominant influenza epitope NP366-374 was achieved with the lower immunization dose of A/PR8/NS124 virus compared to the reference wild type strain. Despite the fact that polyfunctional CD8+ effector memory T-lymphocytes simultaneously producing two (IFNγ and TNFα) or three (IFNγ, IL2, and TNFα) cytokines prevailed in the immune response to both viruses, the relative number of such T-cells was higher in A/PR8/NS124-immunized mice. Furthermore, we have found that polyfunctional populations of lymphocytes generated upon the immunization of mice with the mutant virus demonstrated an increased capacity to produce IFNγ compared to the corresponding populations derived from the A/PR8/full NS-immunized mice. Therefore, immunization with the attenuated influenza virus encoding truncated NS1 protein ensures a more potent CD8+ T-cell immune response.Influenza viruses with truncated NS1 protein stimulate a more intensive innate immune response compared to their wild type counterparts. Here, we investigate how the shortening of the NS1 protein influence the immunogenicity of the conserved T-cellular epitopes of influenza virus. Using flow cytometry, we showed that the intraperitoneal immunization of mice with influenza virus encoding 124 N-terminal amino acid residues of the NS1 protein (A/PR8/NS124) induced higher levels of CD8+ T-cells recognizing immunodominant (NP366-374) and sub-immunodominant (NP161-175, NP196-210, HA323-337, HA474-483, NA427-433) epitopes compared to immunization with the virus expressing full-length NS1 (A/PR8/full NS). It is noteworthy that the response to the immunodominant influenza epitope NP366-374 was achieved with the lower immunization dose of A/PR8/NS124 virus compared to the reference wild type strain. Despite the fact that polyfunctional CD8+ effector memory T-lymphocytes simultaneously producing two (IFNγ and TNFα) or three (IFNγ, IL2, and TNFα) cytokines prevailed in the immune response to both viruses, the relative number of such T-cells was higher in A/PR8/NS124-immunized mice. Furthermore, we have found that polyfunctional populations of lymphocytes generated upon the immunization of mice with the mutant virus demonstrated an increased capacity to produce IFNγ compared to the corresponding populations derived from the A/PR8/full NS-immunized mice. Therefore, immunization with the attenuated influenza virus encoding truncated NS1 protein ensures a more potent CD8+ T-cell immune response

    On the possible observational manifestation of supernova shock impact on the neutron star magnetosphere

    Full text link
    Impact of supernova explosion on the neutron star magnetosphere in a massive binary system is considered. The supernova shock striking the NS magnetosphere filled with plasma can lead to the formation of a magnetospheric tail with significant magnetic energy. The magnetic field reconnection in the current sheet formed can convert the magnetic energy stored in the tail into kinetic energy of accelerated charged particles. Plasma instabilities excited by beams of relativistic particles can lead to the formation of a short pulse of coherent radio emission with parameters similar to those of the observed bright extragalactic millisecond radio burst (Lorimer et al. 2007).Comment: 8 pages, Astron. Lett. in pres

    Superheavy Dark Matter with Discrete Gauge Symmetries

    Get PDF
    We show that there are discrete gauge symmetries protect naturally heavy X particles from decaying into the ordinary light particles in the supersymmetric standard model. This makes the proposal very attractive that the superheavy X particles constitute a part of the dark matter in the present universe. It is more interesting that there are a class of discrete gauge symmetries which naturally accommodate a long-lived unstable X particle. We find that in some discrete Z_{10} models, for example, a superheavy X particle has lifetime \tau_X \simeq 10^{11}-10^{26} years for its mass M_X \simeq 10^{13}-10^{14} GeV. This long lifetime is guaranteed by the absence of lower dimensional operators (of light particles) couple to the X. We briefly discuss a possible explanation for the recently observed ultra-high-energy cosmic ray events by the decay of this unstable X particle.Comment: 9 pages, Late
    corecore