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The free energy cost of confining a star polymer where f flexible polymer chains containing
N monomeric units are tethered to a central unit in a slit with two parallel repulsive walls a
distance D apart is considered, for good solvent conditions. Also the parallel and perpendicular
components of the gyration radius of the star polymer, and the monomer density profile across the
slit are obtained. Theoretical descriptions via Flory theory and scaling treatments are outlined,
and compared to numerical self-consistent field calculations (applying the Scheutjens-Fleer lattice
theory) and to Molecular Dynamics results for a bead-spring model. It is shown that Flory theory
and self-consistent field (SCF) theory yield the correct scaling of the parallel linear dimension of
the star with N , f and D, but cannot be used for estimating the free energy cost reliably. We
demonstrate that the same problem occurs already for the confinement of chains in cylindrical
tubes. We also briefly discuss the problem of a free or grafted star polymer interacting with a single
wall, and show that the dependence of confining force on the functionality of the star is different for
a star confined in a nanoslit and a star interacting with a single wall, which is due to the absence
of a symmetry plane in the latter case.

I. INTRODUCTION

The physical properties and geometric conformations of macromolecules are strongly affected when these polymers
are confined in nanoscopically thin slits or tubes, with linear dimensions in between the size of a monomeric unit and the
size of a free macromolecule in solution [1–17]. For linear macromolecules, this problem has been considered extensively
in the literature, but much less attention has been devoted to the related problem of confining polymers with a more
complex chemical architecture, such as star polymers with f arms [18–20], dendrimers [19], randomly branched
polymers, etc. Such questions are important in various contexts, such as chromatographic separations, colloidal
stabilization (recall that a nanocolloid coated with a grafted polymeric brush layer in many respects has properties
closely related to a star polymer [21]), preparation of stimuli-responsive nanomaterials, biomolecules constrained by
cell membranes, etc. Understanding such problems first for isolated macromolecules and confining purely repulsive
walls is a prerequisite before one can address many related relevant problems such as adsorption of such macromolecules
at the confining surfaces [22–24], interactions between confined polymers under various conditions [20, 25–27], etc.
In the present work, we examine the generic problem of star polymers under nanoconfinement, focusing on the simple

limit where the number of arms f is not excessively large [18, 28–30], and hence the physical effects of crowding too
many arms near the star center need not be considered. As a first step, we formulate in Sec. II a crude version of
the Flory theory (where Gaussian entropic elasticity is combined with a mean-field treatment of monomer-monomer-
repulsions [31]). This treatment predicts correctly the dependence of linear dimensions on the number of arms f , their
chain length N , and the width of the slit D (or pore diameter, respectively). However, the corresponding free energies
disagree with the pertinent predictions of the scaling theory [28, 29], which is based on the simple blob concepts
pioneered by de Gennes and Daoud [1, 2], or Daoud and Cotton [28]. As is well known, the success of the Flory theory
for chain linear dimensions of a single chain is due to the cancellation of errors, although the precise reason for this
cancellation is yet unknown [1].
The free energy of a single chain under good solvent conditions according to Flory theory is predicted to vary like

N1/5 with chain length N while scaling arguments imply that it is independent of N (of the order of thermal energy
kBT [1]). Thus this partial failure of Flory theory for stars is not unexpected. Furthermore, the Flory treatment
cannot describe the smooth crossover to the case of unconfined star when D gets comparable to the diameter of a free
star. For the description of this crossover, the lattice formulation [32] of the self-consistent field theory (Sec. III) clearly
is a more powerful tool, although it shares difficulties with the Flory theory with respect to the scaling properties of
the free energy. These problems of self-consistent field theory are also elucidated by presenting results for the simpler
problem of confining linear chains in cylindrical tubes, [33, 34] Section III B. Molecular Dynamics simulations [35–38]
(Sec. IV), on the other hand, can reproduce the scaling predicted by the blob picture. With respect to local effects
near the confining walls, we discuss the use of the extrapolation length concept, and find it similarly useful as for
confined linear polymers [11, 17]. Finally, we also consider the problem of a star polymer interacting with a single
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wall, and show that the dependence of confining force on the functionality of the star polymer is different for a star
confined in a nanoslit and a star interacting with a single wall, which is due to the absence of a symmetry plane in
the latter case. Section V then summarizes our conclusions.

II. FLORY THEORY OF FREE AND CONFINED STAR POLYMERS

A. Unconfined (Free) Stars

The statistical mechanics of star polymers in good solvent has been treated by many elaborate theories, from self-
consistent minimization of intramolecular interactions [39] to renormalization group methods [40–45]. However, to
provide a first overview it is nevertheless useful to discuss the simple Flory theory.
According to Flory theory, the free energy of a polymer in the presence of excluded volume interactions is written

as a sum of two terms, the first one (Feℓ) corresponds to entropic elasticity of the chain, the second to the (pairwise)
interactions between the effective monomers (Fint), see Grosberg and Khokhlov [46],

F = Feℓ + Fint (1)

For a single chain, Feℓ (in units of temperature) is R2/a2N , with a the monomer size, N the number of monomers.
If Fint is negligible, the probability to have a radius R is simply (factors of order unity will be ignored throughout in
the following and kBT ≡ 1)

p(R) ∝ exp(−Feℓ(R)) ⇒ 〈R2〉 = a2N, 〈F 〉 = 1. (2)

In terms of a blob picture, a free Gaussian chain is a single blob as well. For a free star polymer with f arms linked
to a center, we simply have

Feℓ(R) = fR2/a2N. (3)

The f Gaussian arms do not disturb each other, each arm has a size 〈R2〉 = aN , and the total free energy then is
〈F 〉 = f .
Let us now consider the effect of excluded volume, choosing V = R3, ρ = fN/R3, to conclude Fint(R) = cρ2V =

c(fN)2/R3), here c is related to the 2nd virial coefficient,

F = Feℓ(R) + Fint(R) = fR2/a2N + c(fN)2/R3. (4)

Minimization gives

∂F/∂R = 0 ⇒ 2fR/a2N − 3c(fN)2R−4 = 0,

R = c1/5a2/5f1/5N3/5. (5)

This equation is in agreement with the Daoud-Cotton result based on the blob picture when one takes for the
exponent ν the Flory value ν = 3/5 (see equation (19) of Daoud and Cotton [28]). In these equations we have
assumed for simplicity a constant monomer density inside the volume taken by the star, ignoring the fact that the
density near the star core is enhanced. A more elaborate version of Flory theory takes a radial density into account
[30] but this does not change the qualitative features of the results.
The free energy then becomes

Fstar ∝ c2/5f7/5N1/5. (6)

It is interesting to estimate the free energy from the Daoud-Cotton blob picture which was not done in their paper
but has been estimated by Witten and Pincus [29], who obtained

Fstar ∝ f3/2 ln(N). (7)

As discussed by Johner [30], the mean-field result Eq. (5) actually holds for relatively weak excluded volume effects
and not so strong stretching of the arms in the star polymer. When the strength of the excluded volume increases, a
crossover to a stronger stretching is predicted with a radius of the star polymer scaling as

R ∝ f
1−ν

2 Nν , ν ≈ 0.588 (8)
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This crossover from Eq. (5) to Eq. (8) is missing when one takes the Flory approximation for ν, of course. A similar

crossover has also been pointed out for the height of planar brushes, which scales as h ∝ σ
1/3
g N in the mean-field

regime, yet as h ∝ σ
1−ν

2ν

g N in the regime where excluded volume is very strong (σg being the grafting density [49, 50]).
However, in numerical work it is very difficult to study such small differences between Eqs. (8) and (5), or between
Eq. (6) and (7) [51]. Note that Eq. (6) for the single chain (f = 1) yields the wrong result F ∝ N1/5, already
mentioned in the introduction.

B. Confinement of linear chains

When chains are confined by walls, one must take into account that also a Gaussian chain does not penetrate a
hard wall and hence there exists a free energy cost of confinement. If a Gaussian chain is confined in a spherical
cavity, it experiences a free energy cost of compression (see Eq. 7.2 of the Grosberg-Khokhlov’s book) [23, 46].

Fcompression ∝ N(a/D)2 (9)

One can argue [52] that the same expression (apart from a prefactor) also holds for confinement in a tube or
between plates; note that the result follows from constraining on the accessible positions of chain monomers. Now for
Gaussian chains x, y, z components of distance vectors are uncoupled from each other. So the elastic contribution for
confinement of Gaussian chains is

Feℓ(R) = N(a/D)2 +R2/a2N (10)

where the prefactor of the term N(a/D)2 [this prefactor is not written!] is 1/3 of the above prefactor of Fcompression

for planar confinement, and 2/3 for cylindrical confinement. Here R denotes the chain linear dimension in direction(s)
parallel to the confining walls, or along the tube axis, respectively.
For confinement between parallel plates the volumes V = R2D and the density ρ = N/V = N/(R2D), hence

Fconf = Feℓ(R) + Fint(R) = N(a/D)2 + R2/a2N + cN2/(R2D) (plates) (11)

From ∂Fconf/∂R = 0 we find (the first term N(a/D)2 does not contribute!)

2R/(a2N)− 2cN2/R3D = 0, R4 = ca2N3/D, R = c1/4a1/2D−1/4N3/4 (12)

Again, we conclude that the Flory argument provides the correct scaling of R with D and N , as suggested by the
blob picture [46] and stressed already in various previous papers [47, 48].
For confinement in a tube, the volume is V = RD2, the density ρ = N/V = N/(RD2) and hence

Fconf = Feℓ(R) + Fint(R) = N(a/D)2 +R2/a2N + cN2/(RD2) , (tube) (13)

and ∂Fconf/∂R = 0 then yields

2R/(a2N)− cN2/R2D2 = 0 , R3 = ca2N3/D2, R = c1/3N(a/D)2/3 (14)

Again, the formula for R agrees with the blob picture result [46], but the confinement free energy that Flory theory
predicts is incorrect. The blob picture yields (note g = (D/a)1/ν where g monomers are in a blob of diameter D,
Fconf = nblob = N/g)

F
(blob)
conf = N(D/a)−1/ν = N(D/a)−5/3 (plates or tubes) (15)

in both the plates and tubes cases. This result is not reproduced by Flory theory, which rather yields

F
(Flory)
conf = N(a/D)2 + c1/2N1/2(D/a)−1/2 (plates) (16)

and

F
(Flory)
conf = N(a/D)2 + c2/3N(D/a)−4/3 (tubes) (17)

even though the radius R in lateral direction shows the proper scaling. In fact, the competition between the exponents
−2 and −1/2 may lead to an effective exponent. The fact that one cannot rely on Flory prediction for the free energy
of confined chains has occasionally been noted before [47, 48]. Note that some authors (e.g., [48]) did not include
the therm N(a/D)2 in the elastic part of the free energy, Eq. (10), and thus missed the corresponding term in
Eqs. (16), (17).
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C. Confined Stars

Combining the results of the previous sections, we immediately obtain

F conf.star
eℓ (R) = fN(a/D)2 + fR2/a2N (18)

and, since for confinement in a slit we have V = R2D, ρ = fN/V = fN/R2D, we obtain f conf.star
int (R) = c(fN)2/R2D.

Using Fconf.star(R) = F conf.star.
eℓ (R) + F conf.star

int (R) , ∂Fconf.star(R)/∂R = 0 we get

2fR/(a2N)− 2c(fN)2/R3D = 0, R4 = cfN3/D, (19)

and hence

R = (cf)1/4(D/a)−1/4N3/4 (plates) (20)

This result is in perfect agreement with equation (III-20) of Halperin and Alexander’s paper[18] with respect to the
powers of all 4 parameters c, f,D/a and N . This result also can be interpreted as the behavior of a two-dimensional
star of blobs of diameter D, as pointed out by Benhamou et al. [20].
For confinement in a tube, we would predict (V = RD2, ρ = fN/V = fN/(RD2))

Fconf.star(R) = fN(a/D)2 + fR2/(a2N) + c(fN)2/(RD2) (21)

and hence

3Fconf.star(R)/∂R = 0 ⇒ 2Rf/(a2N)− c(fN)2/R2D2 = 0 (22)

and finally R3 = cfN3(a/D)2, R = (cf)1/3N(a/D)2/3 (tubes).
While the blob picture of Halperin and Alexander yields a confinement free energy

F blob
conf.star ∝ fNc1/3(a/D)5/3 , (23)

the above treatment gives instead again a competition of terms D−2, D−1/2.

FFlory
conf.star ∝ fN(a/D)2 + c1/2f3/2(D/a)−1/2N1/2 (plates) (24)

It is of interest to compare the latter expression to the numerical self-consistent field results which is done in the
next section.

III. SELF-CONSISTENT FIELD THEORY

A. Methodology

The central quantity in the self-consistent field (SCF) approach is the mean-field free energy, which is expressed as a
functional of the volume fraction profiles and SCF potentials for all components in the system. As explained in detail
below, the calculation of the volume fraction profiles and SCF potentials requires solving SCF equations iteratively
and numerically, which necessarily involves space discretization, i.e. use of a lattice. In the present work, we employ
the method of Scheutjens and Fleer[32] which uses the segment diameter σ as the size of the cell; throughout this work
all the distances are reported in units of the cell size σ. A three-dimensional version of the SCF theory is formulated
on a cubic lattice in Cartesian coordinates.
The star polymer is modeled as a spherical core of radius (not diameter!) σ grafted with f chains each of length N .

In order to model a spherical core on a cubic lattice, we use the previously detailed method,[53] whereby the volume
fraction of the core segments, φc(x, y, z) is set to unity for the lattice sites located completely inside the core and is
set equal to the volume fraction of the (cubic) lattice site located within the sphere for the sites lying on the surface
of the core. The grafted polymers are modeled as chains of N monomers all of which are of the same size, with every
monomer occupying one lattice site. Grafting is achieved by pinning one end-segment of each of the chains on the
spherical core.
In addition to the core and polymer segments (labeled c and p, respectively), the system under study also contains

(monomeric) solvent and the surface atoms, labeled v and s, respectively. The surface atoms are placed in the x− y
planes for z ≤ zl and z ≥ zu; their location is “frozen”, i.e. φs(x, y, z) = 1 for the z ranges indicated above and is
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equal to zero otherwise. The degree of confinement of the star polymer can be varied by changing the width of the
planar slit, D = zu − zl. Finally, the solvent particles fill all the vacant lattice sites not taken by other species, i.e.
SCF calculations are carried out under the incompressibility constraint, meaning that for each lattice site (x, y, z) the
sum of the volume fractions of all the species must be equal to unity:

∑

i φi(x, y, z) = 1, where i = c, p, s, and v.
The SCF approach operates with two key quantities – density distributions of all the species and the corresponding

self-consistent field potentials.[32] Within our three-dimensional SCF formalism, the density profiles of all the species
depend on three Cartesian coordinates, x, y, and z. In the spirit of a mean-field approach, the potentials represent
average interactions of a test molecule with all the other molecules in the system. As such, they depend on the
density distributions of the molecules which, in turn, are determined by the potentials. Thus, both quantities must
be computed simultaneously and self-consistently via a numerical iterative solution of the SCF equations. In practice,
starting from the initial guesses for the volume fraction profiles of all the species, φi(x, y, z), one obtains the potentials
as follows:[32]

βui(x, y, z) = βu′(x, y, z) +
∑

j

χij(< φj(x, y, z) > −φb
j), (25)

where φb
j is the bulk volume fraction of the component j, β = 1/kBT , kB is the Boltzmann constant, and T is the

temperature. The first term, which is called the excluded volume potential u′(x, y, z), originates from the fact that the
SCF equations are solved under the incompressibility constraint specified earlier. The Lagrange multiplier associated
with the incompressibility constraint is related to the excluded volume potential u′(x, y, z). The second term in
Eq. (25) accounts for the energy of the contact interactions between the segments of species i and all other species
present in the system, with χij being the corresponding Flory-Huggins interaction parameter. Lastly, the angular
brackets in Eq. (25) denote the averaging of the volume fraction profiles over the nearest-neighbor sites according to:

< φi(x, y, z) >=
1

6

∑

x′,y′,z′

φi(x
′, y′, z′) (26)

where (x′, y′, z′) = (x + α, y + β, z + γ), with α, β, γ = −1, 1. We note that for a cubic lattice considered here, the
step probabilities to go from one lattice layer to the neighboring one are all equal to 1/6 in x, y, and z directions.
Once the SCF potentials are obtained from Eq. (25), one computes the Boltzmann factors associated with these

potentials, Gi(x, y, z) = exp(−βui(x, y, z)), which enter the calculation of propagators that are necessary to obtain the
volume fraction profiles of the polymeric species; the volume fraction profiles for the monomeric species are directly
proportional to the corresponding Boltzmann factors.[32] The volume fraction profiles thus obtained are compared
with the initial guesses substituted into Eq. (25), and the procedure is repeated until self-consistency between input
and output profiles is achieved within the desired numerical accuracy.

B. Confinement of Single chains: Comparison with Monte Carlo Results

Since the above numerical version of SCF equations deals with polymer chains described by walks on a cubic lattice,
where a monomer occupies a lattice site, and neighboring effective monomers along the chain are a lattice spacing
apart, the description is reminiscent of the treatment of polymers as self-avoiding walks on the simple cubic lattice.
The distinction, of course, is that in the self-avoiding walk (SAW) model the condition that every lattice site can
be occupied by a single monomer only, holds strictly while the SCF equations enforce this condition as a statistical
average only. Thus, while in the standard SAW model (as studied by extensive Monte Carlo simulation, see e.g. Hsu
et al.[33] for work on single chains confined in cylindrical tubes of diameter D) the energy cost when two monomers
sit on top of each other is infinite, the potential of the SCF equations (Eq. (25)) implies a finite enthalpy cost only.
Similarly, in Flory theory the constant c in Eq. (4), (11) - (17) is also related to this finite excluded volume strength.
Nevertheless, it is illuminating to carry out a direct comparison of Monte Carlo data for chains confined in a

cylindrical tube with corresponding SCF results (Fig. 1a). Plotting R||/N
3/5 and R⊥/N

3/5 vs. N3/5/D one sees a
similar quality of scaling, i.e. collapse of the data on master curves, for both approaches. But the SCF results, are
shifted to smaller linear dimensions in comparison with the Monte Carlo data, and also the crossover to the “string
of blob”-behavior occurs for larger values of N3/5/D only. This discrepancy is easily interpreted: the mean-field
description of self-avoidance in terms of Eq. (25) is clearly weaker than the strict SAW condition of the Monte Carlo
model. However, it is very plausible, that the SCF equations capture the qualitative features of excluded volume
effects correctly, as far as chain linear dimensions are concerned. However, SCF results for the free energy excess due
to the confinement perform less well (Fig. 1b). In particular, scaling predicts that βFconf/N ≈ const and simply

varies with D as D−1/ν ≈ D−5/3 as long as D is small in comparison to the radius of the free chain, but this is
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not seen: even for N as large as N = 5000, the data still depend on N for small D. This fact is interpreted by the
following consideration: Hsu et al. [33] and Klushin et al. [34] defined the number of blobs nb as nb = N(D/a)−1/ν ,
they did not allow for a prefactor (of order unity) in this relation (a is the lattice spacing of the simple cubic lattice).
Then they showed that the end-to-end distance R|| and the free energy F (in units of kBT ) both scale linearly with
nb and estimated the prefactors A and B in the relations

R|| = ADnb , F = Bnb , N → ∞ (27)

as A ≈ 0.92, B ≈ 5.33, for the standard SAW model on the simple cubic lattice.
However, for comparing their results with the present calculation a different definition for the number of blobs

(which we denote as nblob in our paper, to distinguish it from the above convention) is more useful. We write

nblob = CN(D/a)−1/ν (28)

where C is a constant that is fixed by the requirement (we always deal with the limit N → ∞!)

R|| = Dnblob = CaN(D/a)1−1/ν ≈ CaN(D/a)−2/3 (29)

because the physical picture that the chain is a linear string of nblob blobs of diameter D requires that the prefactor
between R||/D and nblob is precisely unity. This consideration immediately yields for the SAW model that nblob = Anb

and hence F = B′nblob with B′ ≈ 5.79.
While for the SAW model the above constant C = 1/A ≈ 1.09, for the present SCF calculations it is much smaller,

namely C ≈ 0.314, reflecting the fact that SCF represents a much weaker strength of excluded volume, as noted above
(it could be modeled by a Monte Carlo simulation where crossing of chains at the same lattice sites is not strictly
forbidden but only requires a finite energy penalty εex/kBT ). For D = 10, N = 103 we hence find that nblob ≈ 6.8
and hence we should have F/N = B′nblob/N ≈ 0.039 (B′ ≈ 5.79, nblob ≈ 6.8, F ≈ 39), which is about a factor
of 3 larger than the actual SCF result (see Fig. 1). This consideration shows that SCF cannot be mapped onto the
simulation results by rescaling of prefactors.
On the basis of Eq. (17), we expect that SCF theory like Flory theory does not reproduce the blob result F =

B′CN(D/a)−5/3 but rather is described by a competition of two terms, scaling with D−2 and D−4/3, respectively.
But orders of magnitude larger chains would be needed to convincingly demonstrate that.

C. SCF results for confined star polymers

From the computed volume fraction profiles, one can readily obtain various structural properties, such as the
components of the radius of gyration of the star polymer in the directions parallel (x, y) and perpendicular (z) to the
confining plates, e.g.

R2
gx =

∫∞

−∞ dx
∫∞

−∞ dy
∫ zu
zl

dzφp(x, y, z)x
2

∫∞

−∞ dx
∫∞

−∞ dy
∫ zu
zl

dzφp(x, y, z)
, (30)

where φp(x, y, z) is the volume fraction of the star polymer segments, while zl and zu are the locations (along the
z-axis) of the lower and upper confining planes, respectively.
The corresponding numerical SCF results can be compared with the scaling theory. As detailed in the previous

Section, the latter predicts the following scaling behavior of the radius of gyration component parallel to confining
plates, Rg||, (i.e. either Rgx or Rgy for our system): [18]

Rg|| ∼ σf1/4N3/4D−1/4, (31)

where good solvent conditions are assumed. Note that exactly the same scaling behavior of Rg|| is also predicted by
the Flory theory.
In order to test the above prediction, we have performed SCF calculations for a star polymer for several representa-

tive values of f and N , the former ranging from 6 to 12 and the latter ranging from 250 to 750. We gradually varied
the degree of confinement by changing the slit width D. All the calculations were carried out under good solvent
conditions, for non-adsorbing confining walls, i.e. all the Flory-Huggins interaction parameters were set equal to 0.
The summary of our results for the component of the radius of gyration parallel to confining plates is given in

the upper panel of Fig. 2 as a function of the slit width D for several values of f and N . One sees that all three
scaling predictions given by Eq. (31), i.e. scaling of R2

g|| with f1/2, N3/2, and D−1/2 are reasonably well confirmed.
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FIG. 1: (left) Comparison of MC results (symbols) for the longitudinal and transverse components of a linear chain confined in
a tube of diameter D [33] with data from SCF calculations (lines). (right) Variation of the free energy of a linear polymer with

tube diameter D. Theoretical power laws D−4/3 and D−5/3 (from Flory theory and blob model, respectively) are included for
comparison.

Alternatively, in the right panel of Fig. 2 we present a different plot where the ratio Rg||/Rg0 of Rg|| with respect to the
unperturbed gyration radius of the star-polymer, Rg0, is scaled with the dimensionless width of the slit, x = D/Rg0,

where Rg0 ∝ f1/5N3/5. According to Eq. (31), one should then observe a decline by power law ∝ (D/Rg0)
−1/4. As

can be verified from Fig. 2 (right panel), the SCF results obey the expected scaling reasonably well up to x ≈ 0.3÷0.4
and then start deviating from each other and from the x−0.25 line.
In addition to the radius of gyration, we have computed free energy of the star polymer confined between two flat

plates. As discussed in the previous Section, Flory theory gives the following result for the free energy of confinement:

Fconf.star = fN(σ/D)2 + c1/2f3/2(σ/D)1/2N1/2, (32)

where c is related to second virial coefficient. At the same time, scaling theory predicts: [18]

F scaling
conf.star = fNc1/3(σ/D)5/3. (33)

In other words, the blob picture predicts a scaling exponent of −5/3 for the dependence of the free energy on the slit
width, while Flory result is comprised of two terms with two different scaling exponents: −2 and −1/2.
In the lower panel of Fig. 2 (left), we present the SCF results for the dimensionless confinement free energy, βFconf ,

scaled by the product fN . The free energy is plotted as a function of the plate separation D for the same pairs of
values of f and N as in the upper panel. One sees that while the free energy curves obtained for different values of
f and N collapse reasonably well onto a single master curve when scaled by the product fN , this curve does not
exhibit scaling behavior with D that could be convincingly described by a single scaling exponent (as predicted by
Eq. 33), but rather appears to follow the Flory prediction, Eq. (32), which results from the competition of two terms
with two different exponents. Unfortunately, the regime where Rg|| shows the expected power law (for f = 9 and
f = 12, f = 6 shows more deviations) as function of D/σ, Eq. (31), is only about one decade (6 ≤ D/σ ≤ 60). In this
regime, Eq. (33) clearly is not verified. But one decade is not enough, of course, to prove that there is a competition
of two exponents, as found in Eq. (32).
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FIG. 2: (left) Upper panel: the component of the star polymer radius of gyration parallel to confining plates as a function of
the slit width D for several values of f and N . Lower panel: the dimensionless confinement free energy of a star polymer (scaled
by the product fN) as a function of the degree of confinement D for several values of f and N . SCF results are shown as solid
lines, and scaling predictions are plotted as dashed lines. (right) SCF results for Rg|| scaled by Rg0 of unconfined star (i.e., by

f1/5N3/5) plotted vs scaled degree of confinement x = D/Rg0. According to scaling predictions, in this form the results in the

confined regime for all f and N are expected to collapse onto a single curve x−1/4, which is plotted as a dot-dashed line.

IV. SIMULATION RESULTS

A. Molecular Dynamics details

We consider a three-dimensional coarse-grained model [54] of a polymer star which consists of f linear arms with
one end free and the other one tethered to a microscopic core (seed monomer) of size Rc , which is of the order
of the monomer size σ. Each arm is composed of N particles of equal size and mass, connected by bonds. Thus,
the total number of monomers in the star (excluding the core) is fN . The bonded interactions between subsequent
beads is described by the frequently used Kremer-Grest potential [55] V KG(r) = V FENE + V WCA, with the so-called
’finitely-extensible nonlinear elastic’ (FENE) potential:

V FENE(r) = −0.5kr20 ln [1 − (r/r0)
2] (34)

The non-bonded interactions between monomers are taken into account by means ofWeeks-Chandler-Andersen (WCA)
interaction, i.e., the shifted and truncated repulsive branch of the Lennard-Jones potential given by:

V WCA(r) = 4ǫ
[

(σ/r)12 − (σ/r)6 + 1/4
]

θ(21/6σ − r) (35)

In Eqs. (34) and (35), r denotes the distance between the center of two monomers (beads), while the energy scale ǫ and
the length scale σ are chosen as the units of energy and length, respectively. Accordingly, the remaining parameters
are fixed at the values k = 30ǫ/σ2, r0 = 1.5σ. In Eq. (35) we have introduced the Heaviside step function θ(x) = 0
or 1 for x < 0 or x ≥ 0. In consequence, the steric interactions in our model correspond to good solvent conditions.
The star-polymer is placed in a slit, i.e., two parallel, repulsive and infinite walls modeled by WCA-potential of

Eq. (35) acting only in z–direction (perpendicular to the wall). We consider slits widths from D = 3.5σ up to
D = 100σ.
The equilibrium dynamics of the chain is obtained by solving the Langevin equation of motion for the position

rn = [xn, yn, zn] of each bead in the star,

mr̈n = F
FENE

n + F
WCA

n − γṙn +Rn(t), (n = 1, . . . , fN) (36)
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which describes the Brownian motion of a set of interacting monomers. In Eq. (36) FFENE

n and F
WCA

n are deterministic
forces exerted on monomer n by the remaining bonded and non-bonded monomers, respectively. The influence of
solvent is split into slowly evolving viscous force −γṙn and rapidly fluctuating stochastic force Rn. The random,
Gaussian force Rn is related to the friction coefficient γ by the fluctuation-dissipation theorem. The integration step
was 0.002 time units (t.u.) and time is measured in units of

√

mσ2/ǫ, where m denotes the mass of the beads,
m = 1. The ratio of the inertial forces over the friction forces in Eq. (36) is characterized by the Reynolds number
Re =

√
mǫ/γσ which in our setup is Re = 4. In the course of our simulation the velocity-Verlet algorithm was

employed to integrate the equations of motion (36).
Starting configurations were generated as radially straight chains fixed to the immobile seeded (core) monomer,

prior to being placed into a slit with given width D. As a next step, star-polymers were equilibrated until they
adopted their equilibrium configurations in the confinement geometry. In this step sizes and monomer density profiles
have been determined. The required equilibration time depends on f and N , ranging from 5 × 105 time steps for
the smallest stars up to 107 for the largest. For star polymers with higher functionality, f > 12, a larger core bead
diameter σcore > σ has been taken so as to accommodate the f -grafting beads of the arms on the surface of the core
bead. An initially random placement of these beads on the surface of the core bead has been subsequently rendered
to produce a uniform separation between the grafting points (as if being subjected to repulsive Coulomb potential),
using the ’diffuse.cpp’ code, developed by J. D. Lettvin [57].
In order to sample the interaction force of a trapped star, for each equilibrated configuration (at a given width D),

a production run was performed during which time averaged force 〈F(t,D)〉 ≡ F(D) exerted by monomers on both
walls as well as monomer density profiles were calculated. The run was continued until uncertainty of the average
forces were less than 0.01σ.

B. Numerical results for confined stars

We begin by considering the scaling properties of free unconfined stars, examining the scaling of the mean squared
radius of gyration of the star polymers with the number of arms f and their length N , the corresponding results
are shown in Fig. 3. Since the predicted behavior is R2

g0 ∝ f2/5N2ν , we show a log - log plot of R2
g0f

−2/5 versus
N , indicating a wide range of f -values from f = 3 to f = 50. It is clear that this scaling with f cannot be really
expected to hold yet for the smallest number of arms, f = 3, and indeed the data for f = 3 are slightly off the master
curve (which on the log-log plot is the simple straight line corresponding to R2

g0f
−2/5 = 0.4N1.18).Thus, chain lengths

25 ≤ N ≤ 300 and number of arms f ≥ 6 suffice to reach the scaling regime for our simple bead-spring model. We
also note here that our scaling results for unconfined stars are in agreement with earlier simulation work of Grest. [35]
Next, we present the data for the star linear dimensions confined between walls, varying D over a wide range,

3 ≤ D ≤ 60. Now there is a need to distinguish components R2
g|| and R2

g⊥ of the gyration radius parallel and

perpendicular to the confining walls. For the free unconfined star (basically reached at D = 60) we must recover
R2

g⊥ = R2
g||/2 since then all three Cartesian components R2

gz = R2
g⊥, R

2
gx = R2

gy = R2
g||/2 are equivalent. Fig. 4

shows that with decreasing D there is a progressing decrease of R2
g⊥ while R2

g|| is enhanced. Note also that for a small

number of arms (f = 3, 6) there are still rather pronounced statistical inaccuracies which indicate that for confined
star polymers with few arms equilibration suffers from unexpectedly large relaxation times. But replotting the data as
R2

g||f
−1/2 versus D on a log-log plot, Fig. 4 (inset), shows that we reproduce the predicted behavior R2

g|| ∝ f1/2D−1/2.

In the Flory theory it was explicitly assumed that inside the disk-like volume taken by the confined star the density
of monomers is essentially constant. Fig. 5 indicates that this assumption is a rather poor approximation. Rather the
density profile ρ(z)/ρ(D/2) ∝ [(z−λ)/D]1/ν , if D is large and z ≪ D. Here an extrapolation length λ = 0.51 is used.
Figure 6 shows the force F(D) that the monomers of the confined star exert on the walls, choosing slits of widths

up to D = 100. The log-log plot in the inset shows that the data are roughly compatible with the behavior predicted
by scaling theory, F(D) ∝ NfD−8/3. Since the scaling is not perfect, we have tested for the possible presence of
correction terms proportional to f3/2 that one might expect when D is of the order of the linear dimension of an
unperturbed star, Rg0. We note that the force of a star interacting with a single wall is predicted to be [37]

F(z) ∝ f3/2/z, z < Rg0, (37)

if z is the distance between the star center and the constraining wall; when D is of the order of Rg0, one might expect

that F(D) is of the same order, i.e. F(D) ∝ f3/2/D. To test for this hypothesis, F(D) for D = Rg0 is plotted vs f
in Fig. 7. One sees, however, that this hypothesis is not fulfilled, the f -dependence is much weaker. The reason for
this problem is not clear to us.
For the strongly confined stars, on the other hand, the result F(D) ∝ NfD−8/3 appears plausible from the snapshot

picture, Fig. 8: apart from the region in the immediate neighborhood of the center, the confined star is equivalent
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to an assembly of f confined linear chains of length N , so the system contains NfD−5/3 blobs, and this number of
blobs is then just the free energy of the confined star.

C. Force between a star polymer and a repulsive wall

As noted above, the force acting from a star polymer interacting with a wall a distance z from its center is predicted
to be F(z) ∝ f3/2/z, for z < Rgo (Eq. (37)). However, our results for the force between a star polymer interacting

with two walls a distance D apart never gave any evidence for the scaling with f3/2. Rather, we found a scaling linear
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in f for strong confinement (Fig. 6) or even weaker than linear in f for moderate confinement (Fig. 7).
One might suspect that our failure to see a scaling proportional to f3/2 could be due to the problem that we are

not yet in the regime where a f3/2 scaling holds (too short or too few arms, etc.). In order to show that this is not
the case, we have studied stars in semi-infinite space, interacting with a wall at distance z, for precisely the same
choices of f and N as used in the previous section. In practice, in our simulations a “semi-infinite space” also is
realized by a film geometry, where one wall is at distance z and the other wall is a distance much larger than Rgo,
so that the configuration of the star is not at all affected by this second wall. Fig. 9 gives a plot of our results for
N = 150 and f in the range from f = 6 to f = 50. The insert replots these data in the form of f3/2/f(z) versus z:
one sees that for 3 ≤ z ≤ 50 the data nicely superimpose on a straight line, in agreement with Eq. (37). Thus, the
idea that one can easily relate the problem confining a star with walls at distances z = D/2 from both sides, simply
has to be abandoned. In the latter case, there are on average always f/2 arms in the region above the star center
(D/2 < z < D) and below it (0 < z < D/2). In the case of a single wall, more and more arms move above the star
center, the closer the center approaches the wall, and hence the symmetry of the star with respect to the center is
completely destroyed. This effect must be responsible for the different scaling behavior with f .

V. CONCLUSIONS

In the paper we have presented a discussion of how confinement of star polymers under good solvent conditions
affects their linear dimensions parallel and perpendicular to the confining repulsive parallel walls, and we considered
also the free energy cost of confinement (or the related issue of the repulsive force exerted by the macromolecule on
these walls). We have restricted attention to the case of long arms of the star polymers (typically we choose N = 150
in our Molecular Dynamics simulations, but for some purposes both shorter and longer arms, up to N = 300, have
been considered, while for the self-consistent field work somewhat longer chains, from N = 250 to N = 750, could be
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used). The number of arms f was varied from f = 6 to f = 50, avoiding the regime where properties are dominated
by monomeric crowding near the star center. Although for testing asymptotic scaling relations it would be desirable
to be able to study even significantly longer chains, we stress the fact that our work compares well to the regime that
would be experimentally accessible (recall that in our coarse-grained model every effective monomer corresponds to a
group of about 3 to 5 chemical monomers along the backbone of a real polymer chain molecule.)
We find that both self-consistent field calculations and Molecular Dynamics results confirm a result originally

proposed by Halperin and Alexander
[18] that radius of the confined star scales with f,N and the distance D between the walls as R ∝ f1/4D−1/4N3/4,

which can be interpreted in terms of the behavior of a two-dimensional star of blobs of diameter D. The corresponding
confinement free energy Fconf ∝ fN(a/D)5/3, or force on the walls, F ∝ fN(a/D)−8/3 is compatible with the MD
results, while there seems to be some systematic disagreement with both self-consistent field calculations and the even
simpler Flory theory approach. While the latter predicts correctly the scaling of the linear dimensions, this success to
some extent is fortuitous, and the free energy is incorrectly predicted, as in the case of the single unconfined chain. We
argue that self-consistent field calculations for such confinement problems share some of these problems of Flory theory,
despite their much more elaborate character. To elucidate this problem further, we have also performed calculations
of linear chains (with N up to N = 5000) confined in cylindrical tubes, and compared them to corresponding Monte
Carlo calculations. In this context we draw attention to a comparison of self-consistent field calculations and Flory
theory with simulations of spherical brushes confined in spherical cavities [58]. They also find that these theories in
general fail to reproduce the proper scaling behavior.
While in the general case the theory [18] predicts for the confinement free energy a competition of several terms,

some of them scaling with f like f3/2, and a similar scaling also applies for the force F(z) between a star polymers
at distance z from a wall [37], F(z) ∝ f3/2/z, a relation which we also nicely confirm (Fig. 9), we do not find any
evidence for a regime with a f3/2 scaling in the confinement free energy (or force F(D), respectively, see Fig. 7).
Presumably, regimes of much larger N and larger f are necessary to elucidate all the different regimes proposed by
theory [18].
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