617 research outputs found
Incorporating molecular data in fungal systematics: a guide for aspiring researchers
The last twenty years have witnessed molecular data emerge as a primary
research instrument in most branches of mycology. Fungal systematics, taxonomy,
and ecology have all seen tremendous progress and have undergone rapid,
far-reaching changes as disciplines in the wake of continual improvement in DNA
sequencing technology. A taxonomic study that draws from molecular data
involves a long series of steps, ranging from taxon sampling through the
various laboratory procedures and data analysis to the publication process. All
steps are important and influence the results and the way they are perceived by
the scientific community. The present paper provides a reflective overview of
all major steps in such a project with the purpose to assist research students
about to begin their first study using DNA-based methods. We also take the
opportunity to discuss the role of taxonomy in biology and the life sciences in
general in the light of molecular data. While the best way to learn molecular
methods is to work side by side with someone experienced, we hope that the
present paper will serve to lower the learning threshold for the reader.Comment: Submitted to Current Research in Environmental and Applied Mycology -
comments most welcom
Postglacial peatland vegetation succession in Store Mosse bog, south-central Sweden : An exploration of factors driving species change
Boreal peatlands are facing significant changes in response to a warming climate. Sphagnum mosses are key species in these ecosystems and contribute substantially to carbon sequestration. Understanding the factors driving vegetation changes on longer time scales is therefore of high importance, yet challenging since species changes are typically affected by a range of internal and external processes acting simultaneously within the system. This study presents a high-resolution macrofossil analysis of a peat core from Store Mosse bog (south-central Sweden), dating back to nearly 10 000 cal. a BP. The aim is to identify factors driving species changes on multidecadal to millennial timescales considering internal autogenic, internal biotic and external allogenic processes. A set of independent proxy data was used as a comparison framework to estimate changes in the bog and regional effective humidity, nutrient input and cold periods. We found that Store Mosse largely follows the expected successional pathway for a boreal peatland (i.e. lake -> fen -> bog). However, the system has also been affected by other interlinked factors. Of interest, we note that external nutrient input (originating from dust deposition and climate processes) has had a negative effect on Sphagnum while favouring vascular plants, and increased fire activity (driven by allogenic and autogenic factors) typically caused post-fire, floristic wet shifts. These effects interactively caused a floristic reversal and near disappearance of a once-established Sphagnum community, during which climate acted as an indirect driver. Overall, this study highlights that the factors driving vegetation change within the peatland are multiple and complex. Consideration of the role of interlinked factors on Sphagnum is crucial for an improved understanding of the drivers of species change on short- and long-term scales.Peer reviewe
l-α-Lysophosphatidylinositol (LPI) aggravates myocardial ischemia/reperfusion injury via a GPR55/ROCK-dependent pathway
The phospholipid l-α-lysophosphatidylinositol (LPI), an endogenous ligand for GPR55, is elevated in patients with acute coronary syndrome, and a GPR55 antagonist cannabidiol (CBD) reduces experimental ischemia/reperfusion (I/R) injury. While LPI activates multiple signaling pathways, little is known about which ones are important in cardiomyocytes. In this study we explored whether activation of the Rho kinase/ROCK/p38 MAPK pathway is responsible for LPI-induced extension of I/R injury. Using a high-throughput screening method (dynamic mass redistribution; DMR), mouse- and human-induced pluripotent stem cell (iPSC) cardiomyocytes exposed to LPI were shown to exhibit a rapid, sustained, and concentrationâdependent (1 nmol Lâ1â30 ÎŒmol Lâ1) cellular response. Yâ27632 (ROCK inhibitor; 10 & 50 ÎŒmol Lâ1) and CBD (1 ÎŒmol Lâ1) both abolished the DMR response to LPI (10 ÎŒmol Lâ1). In murine iPSC cardiomyocytes, LPI-induced ROCK and p38 MAPK phosphorylation, both of which were prevented by Y-27632 and CBD, but did not induce JNK activation or cleavage of caspase-3. In hearts isolated from wild type (WT) mice subjected to 30 minutes global I/R, LPI (10 ÎŒmol Lâ1) administered via the coronary circulation increased infarct size when applied prior to ischemia onset, but not when given at the time of reperfusion. The exacerbation of tissue injury by LPI was not seen in hearts from GPR55â/â mice or in the presence of Y-27632, confirming that injury is mediated via the GPR55/ROCK/p38 MAPK pathway. These findings suggest that raised levels of LPI in the vicinity of a developing infarct may worsen the outcome of AMI
Detection of signal recognition particle (SRP) RNAs in the nuclear ribosomal internal transcribed spacer 1 (ITS1) of three lineages of ectomycorrhizal fungi (Agaricomycetes, Basidiomycota)
During a routine scan for Signal Recognition Particle (SRP) RNAs in eukaryotic sequences, we surprisingly
found in silico evidence in GenBank for a 265-base long SRP RNA sequence in the ITS1 region of a
total of 11 fully identified species in three ectomycorrhizal genera of the Basidiomycota (Fungi): Astraeus,
Russula, and Lactarius. To rule out sequence artifacts, one specimen from a species indicated to have the
SRP RNA-containing ITS region in each of these genera was ordered and re-sequenced. Sequences identical to the corresponding GenBank entries were recovered, or in the case of a non-original but conspecific specimen differed by three bases, showing that these species indeed have an SRP RNA sequence incorporated into their ITS1 region. Other than the ribosomal genes, this is the first known case of non-coding RNAs in the eukaryotic ITS region, and it may assist in the examination of other types of insertions in fungal genomes.RHN acknowledges financial support from FORMAS (215-2011-
498) and from Stiftelsen Olle Engkvist ByggmÀstare. MPM was partially supported
by Plan Nacional I+D+i project CGL2012-35559. CW acknowledges a Marie
SkĆodowska-Curie post doc grant (660122, CRYPTRANS)Peer reviewe
Pharmacological profiling of the hemodynamic effects of cannabinoid ligands: a combined in vitro and in vivo approach.
The receptors mediating the hemodynamic responses to cannabinoids are not clearly defined due to the multifarious pharmacology of many commonly used cannabinoid ligands. While both CB1 and TRPV1 receptors are implicated, G protein-coupled receptor 55 (GPR55) may also mediate some of the hemodynamic effects of several atypical cannabinoid ligands. The present studies attempted to unravel the pharmacology underlying the in vivo hemodynamic responses to ACEA (CB1 agonist), O-1602 (GPR55 agonist), AM251 (CB1 antagonist), and cannabidiol (CBD; GPR55 antagonist). Agonist and antagonist profiles of each ligand were determined by ligand-induced GTPcS binding in membrane preparations expressing rat and mouse CB1 and GPR55 receptors. Blood pressure responses to ACEA and O-1602 were recorded in anesthetized and conscious mice (wild type, CB1 / and GPR55 / ) and rats in the absence and presence of AM251 and CBD. ACEA demonstrated GTPcS activation at both receptors, while O-1602 only activated GPR55. AM251 exhibited antagonist activity at CB1 and agonist activity at GPR55, while CBD demonstrated selective antagonist activity at GPR55. The depressor response to ACEA was blocked by AM251 and attenuated by CBD, while O-1602 did not induce a depressor response. AM251 caused a depressor response that was absent in GPR55 / mice but enhanced by CBD, while CBD caused a small vasodepressor response that persisted in GPR55 / mice. Our findings show that assessment of the pharmacological profile of receptor activation by cannabinoid ligands in in vitro studies alongside in vivo functional studies is essential to understand the role of cannabinoids in hemodynamic control
- âŠ