143 research outputs found

    Negative regulation of syntaxin4/SNAP-23/VAMP2-mediated membrane fusion by Munc18c <i>In Vitro</i>

    Get PDF
    Background: Translocation of the facilitative glucose transporter GLUT4 from an intracellular store to the plasma membrane is responsible for the increased rate of glucose transport into fat and muscle cells in response to insulin. This represents a specialised form of regulated membrane trafficking. Intracellular membrane traffic is subject to multiple levels of regulation by conserved families of proteins in all eukaryotic cells. Notably, all intracellular fusion events require SNARE proteins and Sec1p/Munc18 family members. Fusion of GLUT4-containing vesicles with the plasma membrane of insulin-sensitive cells involves the SM protein Munc18c, and is regulated by the formation of syntaxin 4/SNAP23/VAMP2 SNARE complexes. Methodology/Principal Findings Here we have used biochemical approaches to characterise the interaction(s) of Munc18c with its cognate SNARE proteins and to examine the role of Munc18c in regulating liposome fusion catalysed by syntaxin 4/SNAP23/VAMP2 SNARE complex formation. We demonstrate that Munc18c makes contacts with both t- and v-SNARE proteins of this complex, and directly inhibits bilayer fusion mediated by the syntaxin 4/SNAP23/VAMP2 SNARE complex. Conclusion/Significance Our reductionist approach has enabled us to ascertain a direct inhibitory role for Munc18c in regulating membrane fusion mediated by syntaxin 4/SNAP23/VAMP2 SNARE complex formation. It is important to note that two different SM proteins have recently been shown to stimulate liposome fusion mediated by their cognate SNARE complexes. Given the structural similarities between SM proteins, it seems unlikely that different members of this family perform opposing regulatory functions. Hence, our findings indicate that Munc18c requires a further level of regulation in order to stimulate SNARE-mediated membrane fusion

    Oxygen Tension Is a Determinant of the Matrix-Forming Phenotype of Cultured Human Meniscal Fibrochondrocytes

    Get PDF
    BACKGROUND: Meniscal cartilage displays a poor repair capacity, especially when injury is located in the avascular region of the tissue. Cell-based tissue engineering strategies to generate functional meniscus substitutes is a promising approach to treat meniscus injuries. Meniscus fibrochondrocytes (MFC) can be used in this approach. However, MFC are unable to retain their phenotype when expanded in culture. In this study, we explored the effect of oxygen tension on MFC expansion and on their matrix-forming phenotype. METHODOLOGY/PRINCIPAL FINDINGS: MFC were isolated from human menisci followed by basic fibroblast growth factor (FGF-2) mediated cell expansion in monolayer culture under normoxia (21%O(2)) or hypoxia (3%O(2)). Normoxia and hypoxia expanded MFC were seeded on to a collagen scaffold. The MFC seeded scaffolds (constructs) were cultured in a serum free chondrogenic medium for 3 weeks under normoxia and hypoxia. Constructs containing normoxia-expanded MFC were subsequently cultured under normoxia while those formed from hypoxia-expanded MFC were subsequently cultured under hypoxia. After 3 weeks of in vitro culture, the constructs were assessed biochemically, histologically and for gene expression via real-time reverse transcription-PCR assays. The results showed that constructs under normoxia produced a matrix with enhanced mRNA ratio (3.5-fold higher; p<0.001) of collagen type II to I. This was confirmed by enhanced deposition of collagen II using immuno-histochemistry. Furthermore, the constructs under hypoxia produced a matrix with higher mRNA ratio of aggrecan to versican (3.5-fold, p<0.05). However, both constructs had the same capacity to produce a glycosaminoglycan (GAG) -specific extracellular matrix. CONCLUSIONS: Our data provide evidence that oxygen tension is a key player in determining the matrix phenotype of cultured MFC. These findings suggest that the use of normal and low oxygen tension during MFC expansion and subsequent neo-tissue formation cultures may be important in engineering different regions of the meniscus

    Three-dimensional culture of human meniscal cells: Extracellular matrix and proteoglycan production

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The meniscus is a complex tissue whose cell biology has only recently begun to be explored. Published models rely upon initial culture in the presence of added growth factors. The aim of this study was to test a three-dimensional (3D) collagen sponge microenvironment (without added growth factors) for its ability to provide a microenvironment supportive for meniscal cell extracellular matrix (ECM) production, and to test the responsiveness of cells cultured in this manner to transforming growth factor-β (TGF-β).</p> <p>Methods</p> <p>Experimental studies were approved prospectively by the authors' Human Subjects Institutional Review Board. Human meniscal cells were isolated from surgical specimens, established in monolayer culture, seeded into a 3D scaffold, and cell morphology and extracellular matrix components (ECM) evaluated either under control condition or with addition of TGF-β. Outcome variables were evaluation of cultured cell morphology, quantitative measurement of total sulfated proteoglycan production, and immunohistochemical study of the ECM components chondroitin sulfate, keratan sulfate, and types I and II collagen.</p> <p>Result and Conclusion</p> <p>Meniscal cells attached well within the 3D microenvironment and expanded with culture time. The 3D microenvironment was permissive for production of chondroitin sulfate, types I and II collagen, and to a lesser degree keratan sulfate. This microenvironment was also permissive for growth factor responsiveness, as indicated by a significant increase in proteoglycan production when cells were exposed to TGF-β (2.48 μg/ml ± 1.00, mean ± S.D., vs control levels of 1.58 ± 0.79, p < 0.0001). Knowledge of how culture microenvironments influence meniscal cell ECM production is important; the collagen sponge culture methodology provides a useful in vitro tool for study of meniscal cell biology.</p

    The effects of second-hand smoke on biological processes important in atherogenesis

    Get PDF
    BACKGROUND: Atherosclerosis is the leading cause of death in western societies and cigarette smoke is among the factors that strongly contribute to the development of this disease. The early events in atherogenesis are stimulated on the one hand by cytokines that chemoattract leukocytes and on the other hand by decrease in circulating molecules that protect endothelial cells (ECs) from injury. Here we focus our studies on the effects of "second-hand" smoke on atherogenesis. METHODS: To perform these studies, a smoking system that closely simulates exposure of humans to second-hand smoke was developed and a mouse model system transgenic for human apoB(100 )was used. These mice have moderate lipid levels that closely mimic human conditions that lead to atherosclerotic plaque formation. RESULTS: "Second-hand" cigarette smoke decreases plasma high density lipoprotein levels in the blood and also decreases the ratios between high density lipoprotein and low density lipoprotein, high density lipoprotein and triglyceride, and high density lipoprotein and total cholesterol. This change in lipid profiles causes not only more lipid accumulation in the aorta but also lipid deposition in many of the smaller vessels of the heart and in hepatocytes. In addition, mice exposed to smoke have increased levels of Monocyte Chemoattractant Protein–1 in circulation and in the heart/aorta tissue, have increased macrophages in the arterial walls, and have decreased levels of adiponectin, an EC-protective protein. Also, cytokine arrays revealed that mice exposed to smoke do not undergo the switch from the pro-inflammatory cytokine profile (that develops when the mice are initially exposed to second-hand smoke) to the adaptive response. Furthermore, triglyceride levels increase significantly in the liver of smoke-exposed mice. CONCLUSION: Long-term exposure to "second-hand" smoke creates a state of permanent inflammation and an imbalance in the lipid profile that leads to lipid accumulation in the liver and in the blood vessels of the heart and aorta. The former potentially can lead to non-alcoholic fatty liver disease and the latter to heart attacks

    Digital image analysis of fingernail colour in cadavers comparing carbon monoxide poisoning to controls

    Get PDF
    The original publication is available at www.springerlink.comCarbon monoxide is a component of motor vehicle exhaust fumes, provided a functional catalytic converter is not present. This gas binds avidly to the hemoglobin molecule in red blood cells preventing its oxygen transport function, effectively poisoning the body by starving it of oxygen. In binding to hemoglobin, carbon monoxide forms carboxyhemoglobin, which has a characteristic bright pink color. It has been remarked that the fingernails of victims of carbon monoxide tend to exhibit pink color, otherwise fingernails of deceased bodies tend towards a dark red to blue color. This study sought to objectively determine by using digital image analysis if a color difference occurred between the fingernails of a group of cadavers with carbon monoxide poisoning compared to a group of controls. The fingernails of the carbon monoxide group did tend to be more red than the controls, but due to overlap between the two groups assessment of the fingernails cannot be recommended as a rapid screening test.Neil E. I. Langloi

    Membrane Bridging and Hemifusion by Denaturated Munc18

    Get PDF
    Neuronal Munc18-1 and members of the Sec1/Munc18 (SM) protein family play a critical function(s) in intracellular membrane fusion together with SNARE proteins, but the mechanism of action of SM proteins remains highly enigmatic. During experiments designed to address this question employing a 7-nitrobenz-2-oxa-1,3-diazole (NBD) fluorescence de-quenching assay that is widely used to study lipid mixing between reconstituted proteoliposomes, we observed that Munc18-1 from squid (sMunc18-1) was able to increase the apparent NBD fluorescence emission intensity even in the absence of SNARE proteins. Fluorescence emission scans and dynamic light scattering experiments show that this phenomenon arises at least in part from increased light scattering due to sMunc18-1-induced liposome clustering. Nuclear magnetic resonance and circular dichroism data suggest that, although native sMunc18-1 does not bind significantly to lipids, sMunc18-1 denaturation at 37°C leads to insertion into membranes. The liposome clustering activity of sMunc18-1 can thus be attributed to its ability to bridge two membranes upon (perhaps partial) denaturation; correspondingly, this activity is hindered by addition of glycerol. Cryo-electron microscopy shows that liposome clusters induced by sMunc18-1 include extended interfaces where the bilayers of two liposomes come into very close proximity, and clear hemifusion diaphragms. Although the physiological relevance of our results is uncertain, they emphasize the necessity of complementing fluorescence de-quenching assays with alternative experiments in studies of membrane fusion, as well as the importance of considering the potential effects of protein denaturation. In addition, our data suggest a novel mechanism of membrane hemifusion induced by amphipathic macromolecules that does not involve formation of a stalk intermediate

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Macronuclear transformation with specific DNA fragments controls the content of the new macronuclear genome in Paramecium tetraurelia.

    Get PDF
    A previously isolated mutant cell line called d48 contains a complete copy of the A surface antigen gene in the micronuclear genome, but the gene is not incorporated into the macronucleus. Previous experiments have shown that a cytoplasmic factor made in the wild-type macronucleus can rescue the mutant. Recently, S. Koizumi and S. Kobayashi (Mol. Cell. Biol. 9:4398-4401, 1989) observed that injection of a plasmid containing the A gene into the d48 macronucleus rescued the cell line after autogamy. It is shown here that an 8.8-kb EcoRI fragment containing only a portion of the A gene coding region is sufficient for the rescue of d48. The inability of other A gene fragments to rescue the mutant shows that this effect is dependent upon specific Paramecium DNA sequences. Rescue results in restoration of the wild-type DNA restriction pattern in the macronucleus. These results are consistent with a model in which the macronuclear A locus normally makes an additional gene product that is required for correct processing of the micronuclear copy of the A gene
    corecore