3,124 research outputs found

    Ablation of solids by femtosecond lasers: ablation mechanism and ablation thresholds for metals and dielectrics

    Full text link
    The mechanism of ablation of solids by intense femtosecond laser pulses is described in an explicit analytical form. It is shown that at high intensities when the ionization of the target material is complete before the end of the pulse, the ablation mechanism is the same for both metals and dielectrics. The physics of this new ablation regime involves ion acceleration in the electrostatic field caused by charge separation created by energetic electrons escaping from the target. The formulae for ablation thresholds and ablation rates for metals and dielectrics, combining the laser and target parameters, are derived and compared to experimental data. The calculated dependence of the ablation thresholds on the pulse duration is in agreement with the experimental data in a femtosecond range, and it is linked to the dependence for nanosecond pulses.Comment: 27 pages incl.3 figs; presented at CLEO-Europe'2000 11-15 Sept.2000; papers QMD6 and CTuK11

    Unconventional magnetism in all-carbon nanofoam

    Get PDF
    We report production of nanostructured carbon foam by a high-repetition-rate, high-power laser ablation of glassy carbon in Ar atmosphere. A combination of characterization techniques revealed that the system contains both sp2 and sp3 bonded carbon atoms. The material is a novel form of carbon in which graphite-like sheets fill space at very low density due to strong hyperbolic curvature, as proposed for ?schwarzite?. The foam exhibits ferromagnetic-like behaviour up to 90 K, with a narrow hysteresis curve and a high saturation magnetization. Such magnetic properties are very unusual for a carbon allotrope. Detailed analysis excludes impurities as the origin of the magnetic signal. We postulate that localized unpaired spins occur because of topological and bonding defects associated with the sheet curvature, and that these spins are stabilized due to the steric protection offered by the convoluted sheets.Comment: 14 pages, including 2 tables and 7 figs. Submitted to Phys Rev B 10 September 200

    Magnetization and Anisotropy of Cobalt Ferrite Thin Films

    Full text link
    The magnetization of thin films of cobalt ferrite frequently falls far below the bulk value of 455 kAm-1, which corresponds to an inverse cation distribution in the spinel structure with a significant orbital moment of about 0.6 muB that is associated with the octahedrally-coordinated Co2+ ions. The orbital moment is responsible for the magnetostriction and magnetocrystalline anisotropy, and its sensitivity to imposed strain. We have systematically investigated the structure and magnetism of films produced by pulsed-laser deposition on different substrates (TiO2, MgO, MgAl2O4, SrTiO3, LSAT, LaAlO3) and as a function of temperature (500-700 C) and oxygen pressure (10-4 - 10 Pa). Magnetization at room-temperature ranges from 60 to 440 kAm-1, and uniaxial substrate-induced anisotropy ranges from +220 kJm-3 for films on deposited on MgO (100) to -2100 kJm-3 for films deposited on MgAl2O4 (100), where the room-temperature anisotropy field reaches 14 T. No rearrangement of high-spin Fe3+ and Co2+ cations on tetrahedral and octahedral sites can reduce the magnetization below the bulk value, but a switch from Fe3+ and Co2+ to Fe2+ and low-spin Co3+ on octahedral sites will reduce the low-temperature magnetization to 120 kAm-1, and a consequent reduction of Curie temperature can bring the room-temperature value to near zero. Possible reasons for the appearance of low-spin cobalt in the thin films are discussed. Keywords; Cobalt ferrite, thin films, pulsed-laser deposition, low-spin Co3+, strain engineering of magnetization

    Integrating water quality models in the High Level Architecture (HLA) environment

    Get PDF
    International audienceHLA (High Level Architecture) is a computer architecture for constructing distributed simulations. It facilitates interoperability among different simulations and simulation types and promotes reuse of simulation software modules. The core of the HLA is the Run-Time Infrastructure (RTI) that provides services to start and stop a simulation execution, to transfer data between interoperating simulations, to control the amount and routing of data that is passed, and to co-ordinate the passage of simulated time among the simulations. The authors are not aware of any HLA applications in the field of water resources management. The development of such a system is underway at the UFZ -Centre for Environmental Research, Germany, in which the simulations of a hydrodynamic model (DYNHYD), eutrophication model (EUTRO) and sediment and micro-pollutant transport model (TOXI) are interlinked and co-ordinated by the HLA RTI environment. This configuration enables extensions such as (i) "cross-model" uncertainty analysis with Monte Carlo Analysis: time synchronisation allows EUTRO and TOXI simulations to be made after each successive simulation time step in DYNHYD, (ii) information transfer from EUTRO to TOXI to compute organic carbon fractions of particulate matter in TOXI, (iii) information transfer from TOXI to EUTRO to compute extinction coefficients in EUTRO and (iv) feedback from water quality simulations to the hydrodynamic modeling

    A comparison of the Nordtest and Japanese test methods for the moisture buffering performance of building materials

    Get PDF
    Two test methods, one worked out in a Nordtest project and the other available as a Japanese Industrial Standard, both developed to characterize building materials with respect to moisture buffering performance, are analyzed in detail by a numerical study on four different materials. Both test methods are based on a similar kind of dynamic loading, but the specifications of each test protocol vary. Therefore, the sensitivity of the test protocols is investigated by varying different protocol parameters. Subsequently, the practical applicability of the obtained values is investigated by confronting the values obtained for the four materials with the dynamic response of a small room with each of the materials used in turns as finishing material. Finally, the results determined according to the dynamic test protocol are compared with values calculated from steady-state material data.status: publishe

    Spin relaxation of conduction electrons in bulk III-V semiconductors

    Full text link
    Spin relaxation time of conduction electrons through the Elliot-Yafet, D'yakonov-Perel and Bir-Aronov-Pikus mechanisms is calculated theoretically for bulk GaAs, GaSb, InAs and InSb of both nn- and pp-type. Relative importance of each spin relaxation mechanism is compared and the diagrams showing the dominant mechanism are constructed as a function of temperature and impurity concentrations. Our approach is based upon theoretical calculation of the momentum relaxation rate and allows understanding of the interplay between various factors affecting the spin relaxation over a broad range of temperature and impurity concentration.Comment: an error in earlier version correcte

    Parasitism of the root-lesion nematode Pratylenchus thornei on chickpea

    Get PDF
    Pratylenchus thornei-chickpea interactions were investigated under controlled and fluctuating environmental conditions in the growth chamber, greenhouse and shadehouse. Under controlled conditions. P. thornei infected chickpea hnes 12071/10054 and P2245 and cultivars Andoum 1, JG62 and UC 27. Line P 2245 and cv. JG 62 were the most susceptible genotypes on the basis of root damage and nematode reproduction, but nematode infection did not significantly reduce root and shoot weights. Cultivars Andoum 1 and UC27 and line 12071/10054 showed the least root damage and nematode reproduction. Inoculation of cv. Andoum 1 with 2500, 5000 or lOOOO nematodes per plant in pots did not affect shoot weight, regardless ofthe conditions of water stress ofthe plants. However, root weight was significantly reduced by nematode infection in plants grown under water stress and fluctuating temperature conditions in the greenhouse, but was not affected by any other treatment. The nematode reproduction index was not affected by soil water content under shadehouse conditions, but was greater on plants watered to soil water-holding capacity than in water-stressed plants under greenhouse conditions. For both environments, the nematode reproduction index decreased when inoculum density was greater than 5000 nematodes per plant.This research was supported by grant AGF92- 0910-CO2-01 from Comision Interministerial de Ciencia y Technologia (CICYT), We thank H, M, Halila, INRA, Tunisia for providing us with seeds of cultivar Andoum 1, and F, Orgaz, Instituto de Agricultura Sostenible, CSIC, Spain for measuring water potential.Peer reviewe

    Electronic structure of the muonium center as a shallow donor in ZnO

    Full text link
    The electronic structure and the location of muonium centers (Mu) in single-crystalline ZnO were determined for the first time. Two species of Mu centers with extremely small hyperfine parameters have been observed below 40 K. Both Mu centers have an axial-symmetric hyperfine structure along with a [0001] axis, indicating that they are located at the AB_{O,//} and BC_{//} sites. It is inferred from their small ionization energy (~6 meV and 50 meV) and hyperfine parameters (~10^{-4} times the vacuum value) that these centers behave as shallow donors, strongly suggesting that hydrogen is one of the primary origins of n type conductivity in as-grown ZnO.Comment: 4 pages, 4 figures, submitted to PR

    Nanosized superparamagnetic precipitates in cobalt-doped ZnO

    Full text link
    The existence of semiconductors exhibiting long-range ferromagnetic ordering at room temperature still is controversial. One particularly important issue is the presence of secondary magnetic phases such as clusters, segregations, etc... These are often tedious to detect, leading to contradictory interpretations. We show that in our cobalt doped ZnO films grown homoepitaxially on single crystalline ZnO substrates the magnetism unambiguously stems from metallic cobalt nano-inclusions. The magnetic behavior was investigated by SQUID magnetometry, x-ray magnetic circular dichroism, and AC susceptibility measurements. The results were correlated to a detailed microstructural analysis based on high resolution x-ray diffraction, transmission electron microscopy, and electron-spectroscopic imaging. No evidence for carrier mediated ferromagnetic exchange between diluted cobalt moments was found. In contrast, the combined data provide clear evidence that the observed room temperature ferromagnetic-like behavior originates from nanometer sized superparamagnetic metallic cobalt precipitates.Comment: 20 pages, 6 figures; details about background subtraction added to section III. (XMCD
    corecore