1,804 research outputs found

    MM and subMM molecular line observations of the southwest lobe of L1551: Evidence of a shell structure

    Get PDF
    Observations have been made of the southwest outflow lobe of L1551 in several millimeter and submillimeter molecular lines. Maps have been made in the J=3-2 and J=2-1 transitions of CO over areas of 7.5 by 2.5 arc minutes and 5 by 5 arc minutes respectively at UKIRT. More detailed maps have also been made in the J=2-1 CO transition over an area of about 6 by 3.5 arc minutes at the NRAO 12m telescope. Additional observations of the J=4-3 transitions of HCN, HCO(+) abd H(13)CO(+) were made at selected positions. The HC(+) J=4-3 transition was detected at several positions along the outflow axis and at the position of IRS 5. Similarly the HCN J=4-3 transition was detected at the position of IRS 5 and also at a position close to HH29. However, the J=4-3 transition of H(13)CO(+) was bit detected at the position of IRS 5 even through it was observed at the position close to HH29 with a peak corrected antenna temperature of 0.23K at a V(LSR) of 1 km s(-1). The detection of the J=4-3 transitions of both HCO(+) and H(13)CO(+) close to the position of HH29 suggest the presence of very dense gas in this region. LVG analysis of the various molecular lines observed give a kinetic temperature between 10 and 15K and a density from 10(5) to 10(6) cm(-3) at the position of IRS 5 at the ambient cloud velocity. At the position close to HH29 LVG analysis of the CO observations gives a density between 10(3) and 10(4) cm(-3) at a kinetic temperature of 25k for a V(LSR) of 0 km s(-1). To the southwest of HH29 there is a large decrease in both the linewidth and intensity of CO emission. This may be due to the interaction between the outflow and a dense clump of gas which gives rise to HH29. The maps of the CO J=3-2 and CO J=2-1 emission integrated in 3.25 km s intervals show the shell structure postulated by Snell and Schloerb (1985)

    Tradeoff breaking as a model of evolutionary transitions in individuality and limits of the fitness-decoupling metaphor

    Get PDF
    Evolutionary transitions in individuality (ETIs) involve the formation of Darwinian collectives from Darwinian particles. The transition from cells to multicellular life is a prime example. During an ETI, collectives become units of selection in their own right. However, the underlying processes are poorly understood. One observation used to identify the completion of an ETI is an increase in collective-level performance accompanied by a decrease in particle-level performance, for example measured by growth rate. This seemingly counterintuitive dynamic has been referred to as fitness decoupling and has been used to interpret both models and experimental data. Extending and unifying results from the literature, we show that fitness of particles and collectives can never decouple because calculations of fitness performed over appropriate and equivalent time intervals are necessarily the same provided the population reaches a stable collective size distribution. By way of solution, we draw attention to the value of mechanistic approaches that emphasise traits, and tradeoffs among traits, as opposed to fitness. This trait-based approach is sufficient to capture dynamics that underpin evolutionary transitions. In addition, drawing upon both experimental and theoretical studies, we show that while early stages of transitions might often involve tradeoffs among particle traits, later-and critical-stages are likely to involve the rupture of such tradeoffs. Thus, when observed in the context of ETIs, tradeoff-breaking events stand as a useful marker of these transitions

    Improving brain computer interface research through user involvement - The transformative potential of integrating civil society organisations in research projects

    Get PDF
    Research on Brain Computer Interfaces (BCI) often aims to provide solutions for vulnerable populations, such as individuals with diseases, conditions or disabilities that keep them from using traditional interfaces. Such research thereby contributes to the public good. This contribution to the public good corresponds to a broader drive of research and funding policy that focuses on promoting beneficial societal impact. One way of achieving this is to engage with the public. In practical terms this can be done by integrating civil society organisations (CSOs) in research. The open question at the heart of this paper is whether and how such CSO integration can transform the research and contribute to the public good. To answer this question the paper describes five detailed qualitative case studies of research projects including CSOs. The paper finds that transformative impact of CSO integration is possible but by no means assured. It provides recommendations on how transformative impact can be promoted

    The p10 FAST protein fusion peptide functions as a cystine noose to induce cholesterol-dependent liposome fusion without liposome tubulation

    Get PDF
    AbstractThe reovirus p10 fusion-associated small transmembrane (FAST) proteins are the smallest known membrane fusion proteins, and evolved specifically to mediate cell–cell, rather than virus–cell, membrane fusion. The 36–40-residue ectodomains of avian reovirus (ARV) and Nelson Bay reovirus (NBV) p10 contain an essential intramolecular disulfide bond required for both cell–cell fusion and lipid mixing between liposomes. To more clearly define the functional, biochemical and biophysical features of this novel fusion peptide, synthetic peptides representing the p10 ectodomains of ARV and NBV were analyzed by solution-state NMR spectroscopy, circular dichroism spectroscopy, fluorescence spectroscopy-based hydrophobicity analysis, and liposome binding and fusion assays. Results indicate that disulfide bond formation promotes exposure of hydrophobic residues, as indicated by bis-ANS binding and time-dependent peptide aggregation under aqueous conditions, implying the disulfide bond creates a small, geometrically constrained, cystine noose. Noose formation is required for peptide partitioning into liposome membranes and liposome lipid mixing, and electron microscopy revealed that liposome–liposome fusion occurs in the absence of liposome tubulation. In addition, p10 fusion peptide activity, but not membrane partitioning, is dependent on membrane cholesterol

    Arkansas Small-Grain Cultivar Performance tests 2008-2009

    Get PDF
    Small-grain cultivar performance tests are conducted each year in Arkansas by the Arkansas Agricultural Experiment Station, Department of Crop, Soil, and Environmental Sciences. The tests provide information to companies developing cultivars and/or marketing seed within the state and aid the Arkansas Cooperative Extension Service in formulating cultivar recommendations for smallgrain producers

    Defect Induced Ferromagnetism in Undoped ZnO Nanoparticles

    Get PDF
    Undoped ZnO nanoparticles (NPs) with size ∼12 nm were produced using forced hydrolysis methods using diethylene glycol (DEG) [called ZnO-I] or denatured ethanol [called ZnO-II] as the reaction solvent; both using Zn acetate dehydrate as precursor. Both samples showed weak ferromagnetic behavior at 300 K with saturation magnetization Ms = 0.077 ± 0.002 memu/g and 0.088 ± 0.013 memu/g for ZnO-I and ZnO-II samples, respectively. Fourier transform infrared(FTIR) spectra showed that ZnO-I nanocrystals had DEG fragments linked to their surface. Photoluminescence (PL) data showed a broad emission near 500 nm for ZnO-II which is absent in the ZnO-I samples, presumably due to the blocking of surface traps by the capping molecules. Intentional oxygen vacancies created in the ZnO-I NPs by annealing at 450 °C in flowing Ar gas gradually increased Ms up to 90 min and x-ray photoelectron spectra (XPS) suggested that oxygen vacancies may have a key role in the observed changes in Ms. Finally, PL spectra of ZnO showed the appearance of a blue/violet emission, attributed to Zn interstitials,whose intensity changes with annealing time, similar to the trend seen for Ms. The observed variation in the magnetization of ZnO NP with increasing Ar annealing time seems to depend on the changes in the number of Zn interstitials and oxygen vacancies

    ERp29 triggers a conformational change in polyomavirus to stimulate membrane binding

    Get PDF
    Funding Information: We thank Tom Rapoport and Kristen Verhey for critically reading the manuscript. B.T. is a Biological Scholar at the University of Michigan Medical School. E.K.R. is supported by a training grant from the National Science Foundation. S.M. was supported by the Swedish Medical Research Council and the Swedish Society of Medicine. M.B. received a scholarship from the Royal Swedish Academy. The work was supported in part by a grant to T.B. from the National Cancer Institute (CA 082395). Copyright: Copyright 2008 Elsevier B.V., All rights reserved.Membrane penetration of nonenveloped viruses is a poorly understood process. We have investigated early stages of this process by studying the conformational change experienced by polyomavirus (Py) in the lumen of the endoplasmic reticulum (ER), a step that precedes its transport into the cytosol. We show that a PDI-like protein, ERp29, exposes the C-terminal arm of Py's VP1 protein, leading to formation of a hydrophobic particle that binds to a lipid bilayer; this reaction likely mimics initiation of Py penetration across the ER membrane. Expression of a dominant-negative ERp29 decreases Py infection, indicating ERp29 facilitates viral infection. Interestingly, cholera toxin, another toxic agent that crosses the ER membrane into the cytosol, is unfolded by PDI in the ER. Our data thus identify an ER factor that mediates membrane penetration of a nonenveloped virus and suggest that PDI family members are generally involved in ER remodeling reactions.publishersversionPeer reviewe
    corecore