26 research outputs found

    'No place to hide' : stalking victimisation and its psycho-social effects

    Get PDF
    Stalking victimisation has for a long time been ignored and minimised, and it has been traditionally regarded as a rare and mostly β€˜celebrity-related’ phenomenon. However, research shows that stalking is far more common, and its impact can be serious and far-reaching. This article reveals and discusses the psycho-social effects of stalking, drawing on the in-depth accounts of twenty-six selfidentified victims who were interviewed as part of a study that explored the impact of stalking based on the victims’ voices and experiences. The study found that stalking victimisation is lifechanging and its psycho-social effects are complex, long-term and often traumatic. The article concludes by considering the implications of these findings where the need is stressed to improve criminological understanding of stalking and its unseen psycho-social harms so that victims and their cases are properly dealt with by the criminal justice system and society

    Genomorama: genome visualization and analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The ability to visualize genomic features and design experimental assays that can target specific regions of a genome is essential for modern biology. To assist in these tasks, we present Genomorama, a software program for interactively displaying multiple genomes and identifying potential DNA hybridization sites for assay design.</p> <p>Results</p> <p>Useful features of Genomorama include genome search by DNA hybridization (probe binding and PCR amplification), efficient multi-scale display and manipulation of multiple genomes, support for many genome file types and the ability to search for and retrieve data from the National Center for Biotechnology Information (NCBI) Entrez server.</p> <p>Conclusion</p> <p>Genomorama provides an efficient computational platform for visualizing and analyzing multiple genomes.</p

    Testing and Validation of High Density Resequencing Microarray for Broad Range Biothreat Agents Detection

    Get PDF
    Rapid and effective detection and identification of emerging microbiological threats and potential biowarfare agents is very challenging when using traditional culture-based methods. Contemporary molecular techniques, relying upon reverse transcription and/or polymerase chain reaction (RT-PCR/PCR) provide a rapid and effective alternative, however, such assays are generally designed and optimized to detect only a limited number of targets, and seldom are capable of differentiation among variants of detected targets. To meet these challenges, we have designed a broad-range resequencing pathogen microarray (RPM) for detection of tropical and emerging infectious agents (TEI) including biothreat agents: RPM-TEI v 1.0 (RPM-TEI). The scope of the RPM-TEI assay enables detection and differential identification of 84 types of pathogens and 13 toxin genes, including most of the class A, B and C select agents as defined by the Centers for Disease Control and Prevention (CDC, Atlanta, GA). Due to the high risks associated with handling these particular target pathogens, the sensitivity validation of the RPM-TEI has been performed using an innovative approach, in which synthetic DNA fragments are used as templates for testing the assay's limit of detection (LOD). Assay specificity and sensitivity was subsequently confirmed by testing with full-length genomic nucleic acids of selected agents. The LOD for a majority of the agents detected by RPM-TEI was determined to be at least 104 copies per test. Our results also show that the RPM-TEI assay not only detects and identifies agents, but is also able to differentiate near neighbors of the same agent types, such as closely related strains of filoviruses of the Ebola Zaire group, or the Machupo and Lassa arenaviruses. Furthermore, each RPM-TEI assay results in specimen-specific agent gene sequence information that can be used to assess pathogenicity, mutations, and virulence markers, results that are not generally available from multiplexed RT-PCR/PCR-based detection assays

    The Secret Life of the Anthrax Agent Bacillus anthracis: Bacteriophage-Mediated Ecological Adaptations

    Get PDF
    Ecological and genetic factors that govern the occurrence and persistence of anthrax reservoirs in the environment are obscure. A central tenet, based on limited and often conflicting studies, has long held that growing or vegetative forms of Bacillus anthracis survive poorly outside the mammalian host and must sporulate to survive in the environment. Here, we present evidence of a more dynamic lifecycle, whereby interactions with bacterial viruses, or bacteriophages, elicit phenotypic alterations in B. anthracis and the emergence of infected derivatives, or lysogens, with dramatically altered survival capabilities. Using both laboratory and environmental B. anthracis strains, we show that lysogeny can block or promote sporulation depending on the phage, induce exopolysaccharide expression and biofilm formation, and enable the long-term colonization of both an artificial soil environment and the intestinal tract of the invertebrate redworm, Eisenia fetida. All of the B. anthracis lysogens existed in a pseudolysogenic-like state in both the soil and worm gut, shedding phages that could in turn infect non-lysogenic B. anthracis recipients and confer survival phenotypes in those environments. Finally, the mechanism behind several phenotypic changes was found to require phage-encoded bacterial sigma factors and the expression of at least one host-encoded protein predicted to be involved in the colonization of invertebrate intestines. The results here demonstrate that during its environmental phase, bacteriophages provide B. anthracis with alternatives to sporulation that involve the activation of soil-survival and endosymbiotic capabilities

    Genome Differences That Distinguish Bacillus anthracis from Bacillus cereus and Bacillus thuringiensis

    Get PDF
    The three species of the group 1 bacilli, Bacillus anthracis, B. cereus, and B. thuringiensis, are genetically very closely related. All inhabit soil habitats but exhibit different phenotypes. B. anthracis is the causative agent of anthrax and is phylogenetically monomorphic, while B. cereus and B. thuringiensis are genetically more diverse. An amplified fragment length polymorphism analysis described here demonstrates genetic diversity among a collection of non-anthrax-causing Bacillus species, some of which show significant similarity to B. anthracis. Suppression subtractive hybridization was then used to characterize the genomic differences that distinguish three of the non-anthrax-causing bacilli from B. anthracis Ames. Ninety-three DNA sequences that were present in B. anthracis but absent from the non-anthrax-causing Bacillus genomes were isolated. Furthermore, 28 of these sequences were not found in a collection of 10 non-anthrax-causing Bacillus species but were present in all members of a representative collection of B. anthracis strains. These sequences map to distinct loci on the B. anthracis genome and can be assayed simultaneously in multiplex PCR assays for rapid and highly specific DNA-based detection of B. anthracis

    Enteric virulence associated protein VapC inhibits translation by cleavage of initiator tRNA

    No full text
    Eukaryotic PIN (PilT N-terminal) domain proteins are ribonucleases involved in quality control, metabolism and maturation of mRNA and rRNA. The majority of prokaryotic PIN-domain proteins are encoded by the abundant vapBC toxinβ€”antitoxin loci and inhibit translation by an unknown mechanism. Here we show that enteric VapCs are site-specific endonucleases that cleave tRNAfMet in the anticodon stem-loop between nucleotides +38 and +39 in vivo and in vitro. Consistently, VapC inhibited translation in vivo and in vitro. Translation-reactions could be reactivated by the addition of VapB and extra charged tRNAfMet. Similarly, ectopic production of tRNAfMet counteracted VapC in vivo. Thus, tRNAfMet is the only cellular target of VapC. Depletion of tRNAfMet by vapC induction was bacteriostatic and stimulated ectopic translation initiation at elongator codons. Moreover, addition of chloramphenicol to cells carrying vapBC induced VapC activity. Thus, by cleavage of tRNAfMet, VapC simultaneously may regulate global cellular translation and reprogram translation initiation
    corecore