11,818 research outputs found

    Azimuthal and single spin asymmetry in deep-inelastic lepton-nucleon scattering

    Get PDF
    We derive a general framework for describing semi-inclusive deep-inelastic lepton-nucleon scattering in terms of the unintegrated parton distributions and other higher twist parton correlations. Such a framework provides a consistent approach to the calculation of inclusive and semi-inclusive cross sections including higher twist effects. As an example, we calculate the azimuthal asymmetries to the order of 1/Q in semi-inclusive process with transversely polarized target. A non-vanishing single-spin asymmetry in the ``triggered inclusive process'' is predicted to be 1/Q suppressed with a part of the coefficient related to a moment of the Sivers function.Comment: 9 pages, 1 figur

    Modeling Vocal Fold Motion with a New Hydrodynamic Semi-Continuum Model

    Full text link
    Vocal fold (VF) motion is a fundamental process in voice production, and is also a challenging problem for direct numerical computation because the VF dynamics depend on nonlinear coupling of air flow with the response of elastic channels (VF), which undergo opening and closing, and induce internal flow separation. A traditional modeling approach makes use of steady flow approximation or Bernoulli's law which is known to be invalid during VF opening. We present a new hydrodynamic semi-continuum system for VF motion. The airflow is modeled by a quasi-one dimensional continuum aerodynamic system, and the VF by a classical lumped two mass system. The reduced flow system contains the Bernoulli's law as a special case, and is derivable from the two dimensional compressible Navier-Stokes equations. Since we do not make steady flow approximation, we are able to capture transients and rapid changes of solutions, e.g. the double pressure peaks at opening and closing stages of VF motion consistent with experimental data. We demonstrate numerically that our system is robust, and models in-vivo VF oscillation more physically. It is also much simpler than a full two-dimensional Navier-Stokes system.Comment: 27 pages,6 figure

    Incommensurate Magnetism around Vortices and Impurities in High-TcT_c Superconductors

    Full text link
    By solving self-consistently an effective Hamiltonian including interactions for both antiferromagnetic spin-density wave (SDW) and d-wave superconducting (DSC) orderings, a comparison study is made for the local magnetic structure around superconducting vortices and unitary impurities. To represent the optimally doped regime of cuprates, the parameter values are chosen such that the DSC is dominant while the SDW is vanishingly small. We show that when vortices are introduced into the superconductor, an oscillating SDW is induced around them. The oscillation period of the SDW is microscopically found, consistent with experiments, to be eight lattice constants (8a08a_0). The associated charge-density wave (CDW) oscillates with a period of one half (4a04a_0) of the SDW. In the case of unitary impurities, we find a SDW modulation with identical periodicity, however without an associated CDW. We propose neutron scattering experiments to test this prediction.Comment: 5 pages, 4 eps figures (color) included in the tex

    Statistical Analysis of a Semilinear Hyperbolic System Advected by a White in Time Random Velocity Field

    Full text link
    We study a system of semilinear hyperbolic equations passively advected by smooth white noise in time random velocity fields. Such a system arises in modeling non-premixed isothermal turbulent flames under single-step kinetics of fuel and oxidizer. We derive closed equations for one-point and multi-point probability distribution functions (PDFs) and closed form analytical formulas for the one point PDF function, as well as the two-point PDF function under homogeneity and isotropy. Exact solution formulas allows us to analyze the ensemble averaged fuel/oxidizer concentrations and the motion of their level curves. We recover the empirical formulas of combustion in the thin reaction zone limit and show that these approximate formulas can either underestimate or overestimate average concentrations when reaction zone is not tending to zero. We show that the averaged reaction rate slows down locally in space due to random advection induced diffusion; and that the level curves of ensemble averaged concentration undergo diffusion about mean locations.Comment: 18 page

    Atomic scale elastic textures coupled to electrons in superconductors

    Full text link
    We present an atomic scale theory of lattice distortions using strain related variables and their constraint equations. Our approach connects constrained atomic length scale variations to continuum elasticity and describes elasticity at all length scales. We apply the general approach to a two-dimensional square lattice with a monatomic basis, and find the atomic scale elastic textures around a structural domain wall and a single defect, as exemplary textures. We clarify the microscopic origin of gradient terms, some of which are included phenomenologically in Landau-Ginzburg theory. The obtained elastic textures are used to investigate the effects of elasticity-driven lattice deformation on the nanoscale electronic structure in superconductor by solving the Bogliubov-de Gennes equations with the electronic degrees of freedom coupled to the lattice ones. It is shown that the order parameter is depressed in the regions where the lattice deformation takes place. The calculated local density of states suggests the electronic structure is strongly modulated as a response to the lattice deformation-- the elasticity propagates the electronic response over long distances. In particular, it is possible for the trapping of low-lying quasiparticle states around the defects. These predictions could be directly tested by STM experiments in superconducting materials.Comment: Proceeding paper for "Conference on Dynamic Inhomogeneities in Complex Oxides" (to appear in J. Superconductivity
    • …
    corecore