184 research outputs found

    Steady operation of the electric drive of pipeline armature in the emergency situation at low ambient temperatures

    Get PDF
    This scientific work is devoted to the study of the electric drive operation of pipeline armature at low ambient temperatures. Hit of moisture into reducer and rare inclusions in operation of locking regulator are led to curdling lubricant that causes the increased wear of mechanical knots. There is a probability of freezing mechanical components; it leads to emergency situations. The problem of improving working efficiency of the electric drive of shut-off regulating armature at low ambient temperatures of the environment is solved in this work. A simulation model of the GUSAR electric drive was developed to solve this problem. Studies of the simulation model show the need to limit the torque increase rate on a drive motor shaft. The algorithm of setting of PI speed controller to obtain acceptable transient processes is suggested. Recommendations for the use of the algorithm in the microprocessor control system of electric drive are proposed. It is shown that the electric drive operation algorithm with torque increasing limitation on the motor shaft will be smoothly working off the perturbing actions that occur in pipeline armature

    Self-replication and splitting of domain patterns in reaction-diffusion systems with fast inhibitor

    Full text link
    An asymptotic equation of motion for the pattern interface in the domain-forming reaction-diffusion systems is derived. The free boundary problem is reduced to the universal equation of non-local contour dynamics in two dimensions in the parameter region where a pattern is not far from the points of the transverse instabilities of its walls. The contour dynamics is studied numerically for the reaction-diffusion system of the FitzHugh-Nagumo type. It is shown that in the asymptotic limit the transverse instability of the localized domains leads to their splitting and formation of the multidomain pattern rather than fingering and formation of the labyrinthine pattern.Comment: 9 pages (ReVTeX), 5 figures (postscript). To be published in Phys. Rev.

    Sound modes broadening for Fibonacci one dimensional quasicrystals

    Full text link
    We investigate vibrational excitation broadening in one dimensional Fibonacci model of quasicrystals (QCs). The chain is constructed from particles with two masses following the Fibonacci inflation rule. The eigenmode spectrum depends crucially on the mass ratio. We calculate the eigenstates and eigenfunctions. All calculations performed self-consistently within the regular expansion over the three wave coupling constant. The approach can be extended to three dimensional systems. We find that in the intermediate range of mode coupling constants, three-wave broadening for the both types of systems (1D Fibonacci and 3D QCs) depends universally on frequency. Our general qualitative conclusion is that for a system with a non-simple elementary cell phonon spectrum broadening is always larger than for a system with a primitive cell (provided all other characteristics are the same).Comment: 2o pages, 15 figure

    Scenarios of domain pattern formation in a reaction-diffusion system

    Full text link
    We performed an extensive numerical study of a two-dimensional reaction-diffusion system of the activator-inhibitor type in which domain patterns can form. We showed that both multidomain and labyrinthine patterns may form spontaneously as a result of Turing instability. In the stable homogeneous system with the fast inhibitor one can excite both localized and extended patterns by applying a localized stimulus. Depending on the parameters and the excitation level of the system stripes, spots, wriggled stripes, or labyrinthine patterns form. The labyrinthine patterns may be both connected and disconnected. In the the stable homogeneous system with the slow inhibitor one can excite self-replicating spots, breathing patterns, autowaves and turbulence. The parameter regions in which different types of patterns are realized are explained on the basis of the asymptotic theory of instabilities for patterns with sharp interfaces developed by us in Phys. Rev. E. 53, 3101 (1996). The dynamics of the patterns observed in our simulations is very similar to that of the patterns forming in the ferrocyanide-iodate-sulfite reaction.Comment: 15 pages (REVTeX), 15 figures (postscript and gif), submitted to Phys. Rev.

    Striped periodic minimizers of a two-dimensional model for martensitic phase transitions

    Full text link
    In this paper we consider a simplified two-dimensional scalar model for the formation of mesoscopic domain patterns in martensitic shape-memory alloys at the interface between a region occupied by the parent (austenite) phase and a region occupied by the product (martensite) phase, which can occur in two variants (twins). The model, first proposed by Kohn and Mueller, is defined by the following functional: E(u)=βu(0,)H1/2([0,h])2+0Ldx0hdy(ux2+ϵuyy){\cal E}(u)=\beta||u(0,\cdot)||^2_{H^{1/2}([0,h])}+ \int_{0}^{L} dx \int_0^h dy \big(|u_x|^2 + \epsilon |u_{yy}| \big) where u:[0,L]×[0,h]Ru:[0,L]\times[0,h]\to R is periodic in yy and uy=±1u_y=\pm 1 almost everywhere. Conti proved that if βϵL/h2\beta\gtrsim\epsilon L/h^2 then the minimal specific energy scales like min{(ϵβ/L)1/2,(ϵ/L)2/3}\sim \min\{(\epsilon\beta/L)^{1/2}, (\epsilon/L)^{2/3}\}, as (ϵ/L)0(\epsilon/L)\to 0. In the regime (ϵβ/L)1/2(ϵ/L)2/3(\epsilon\beta/L)^{1/2}\ll (\epsilon/L)^{2/3}, we improve Conti's results, by computing exactly the minimal energy and by proving that minimizers are periodic one-dimensional sawtooth functions.Comment: 29 pages, 3 figure

    Steady operation of the electric drive of pipeline armature in the emergency situation at low ambient temperatures

    Get PDF
    This scientific work is devoted to the study of the electric drive operation of pipeline armature at low ambient temperatures. Hit of moisture into reducer and rare inclusions in operation of locking regulator are led to curdling lubricant that causes the increased wear of mechanical knots. There is a probability of freezing mechanical components; it leads to emergency situations. The problem of improving working efficiency of the electric drive of shut-off regulating armature at low ambient temperatures of the environment is solved in this work. A simulation model of the GUSAR electric drive was developed to solve this problem. Studies of the simulation model show the need to limit the torque increase rate on a drive motor shaft. The algorithm of setting of PI speed controller to obtain acceptable transient processes is suggested. Recommendations for the use of the algorithm in the microprocessor control system of electric drive are proposed. It is shown that the electric drive operation algorithm with torque increasing limitation on the motor shaft will be smoothly working off the perturbing actions that occur in pipeline armature

    The Shapes of Flux Domains in the Intermediate State of Type-I Superconductors

    Full text link
    In the intermediate state of a thin type-I superconductor magnetic flux penetrates in a disordered set of highly branched and fingered macroscopic domains. To understand these shapes, we study in detail a recently proposed "current-loop" (CL) model that models the intermediate state as a collection of tense current ribbons flowing along the superconducting-normal interfaces and subject to the constraint of global flux conservation. The validity of this model is tested through a detailed reanalysis of Landau's original conformal mapping treatment of the laminar state, in which the superconductor-normal interfaces are flared within the slab, and of a closely-related straight-lamina model. A simplified dynamical model is described that elucidates the nature of possible shape instabilities of flux stripes and stripe arrays, and numerical studies of the highly nonlinear regime of those instabilities demonstrate patterns like those seen experimentally. Of particular interest is the buckling instability commonly seen in the intermediate state. The free-boundary approach further allows for a calculation of the elastic properties of the laminar state, which closely resembles that of smectic liquid crystals. We suggest several new experiments to explore of flux domain shape instabilities, including an Eckhaus instability induced by changing the out-of-plane magnetic field, and an analog of the Helfrich-Hurault instability of smectics induced by an in-plane field.Comment: 23 pages, 22 bitmapped postscript figures, RevTex 3.0, submitted to Phys. Rev. B. Higher resolution figures may be obtained by contacting the author

    Possibility of Implementing Control of the Mechanical Properties of Steel by the Parameters of the Limiting Remagnetization Curve

    Full text link
    The paper discusses the possibility of creating a new method for controlling the mechan-ical properties of steels using magnetic parameters. Using the example of hardness and tensile strength of heat-treated samples of structural steels, an explanation of the effect of heat treatment on these charact

    Order Parameter Equations for Front Transitions: Planar and Circular Fronts

    Full text link
    Near a parity breaking front bifurcation, small perturbations may reverse the propagation direction of fronts. Often this results in nonsteady asymptotic motion such as breathing and domain breakup. Exploiting the time scale differences of an activator-inhibitor model and the proximity to the front bifurcation, we derive equations of motion for planar and circular fronts. The equations involve a translational degree of freedom and an order parameter describing transitions between left and right propagating fronts. Perturbations, such as a space dependent advective field or uniform curvature (axisymmetric spots), couple these two degrees of freedom. In both cases this leads to a transition from stationary to oscillating fronts as the parity breaking bifurcation is approached. For axisymmetric spots, two additional dynamic behaviors are found: rebound and collapse.Comment: 9 pages. Aric Hagberg: http://t7.lanl.gov/People/Aric/; Ehud Meron: http://www.bgu.ac.il/BIDR/research/staff/meron.htm

    Phase Dynamics of Nearly Stationary Patterns in Activator-Inhibitor Systems

    Full text link
    The slow dynamics of nearly stationary patterns in a FitzHugh-Nagumo model are studied using a phase dynamics approach. A Cross-Newell phase equation describing slow and weak modulations of periodic stationary solutions is derived. The derivation applies to the bistable, excitable, and the Turing unstable regimes. In the bistable case stability thresholds are obtained for the Eckhaus and the zigzag instabilities and for the transition to traveling waves. Neutral stability curves demonstrate the destabilization of stationary planar patterns at low wavenumbers to zigzag and traveling modes. Numerical solutions of the model system support the theoretical findings
    corecore