5,761 research outputs found

    Algorithm based comparison between the integral method and harmonic analysis of the timing jitter of diode-based and solid-state pulsed laser sources

    Get PDF
    AbstractA comparison between two methods of timing jitter calculation is presented. The integral method utilizes spectral area of the single side-band (SSB) phase noise spectrum to calculate root mean square (rms) timing jitter. In contrast the harmonic analysis exploits the uppermost noise power in high harmonics to retrieve timing fluctuation. The results obtained show that a consistent timing jitter of 1.2ps is found by the integral method and harmonic analysis in gain-switched laser diodes with an external cavity scheme. A comparison of the two approaches in noise measurement of a diode-pumped Yb:KY(WO4)2 passively mode-locked laser is also shown in which both techniques give 2ps rms timing jitter

    An ultraviolet excess in the superluminous supernova Gaia16apd reveals a powerful central engine

    Full text link
    Since the discovery of superluminous supernovae (SLSNe) in the last decade, it has been known that these events exhibit bluer spectral energy distributions than other supernova subtypes, with significant output in the ultraviolet. However, the event Gaia16apd seems to outshine even the other SLSNe at rest-frame wavelengths below ∌3000\sim 3000 \AA. Yan et al (2016) have recently presented HST UV spectra and attributed the UV flux to low metallicity and hence reduced line blanketing. Here we present UV and optical light curves over a longer baseline in time, revealing a rapid decline at UV wavelengths despite a typical optical evolution. Combining the published UV spectra with our own optical data, we demonstrate that Gaia16apd has a much hotter continuum than virtually any SLSN at maximum light, but it cools rapidly thereafter and is indistinguishable from the others by ∌10\sim 10-15 days after peak. Comparing the equivalent widths of UV absorption lines with those of other events, we show that the excess UV continuum is a result of a more powerful central power source, rather than a lack of UV absorption relative to other SLSNe or an additional component from interaction with the surrounding medium. These findings strongly support the central-engine hypothesis for hydrogen-poor SLSNe. An explosion ejecting Mej=4(0.2/Îș)M_{\rm ej} = 4 (0.2/\kappa) M⊙_\odot, where Îș\kappa is the opacity in cm2^2g−1^{-1}, and forming a magnetar with spin period P=2P=2 ms, and B=2×1014B=2\times10^{14} G (lower than other SLSNe with comparable rise-times) can consistently explain the light curve evolution and high temperature at peak. The host metallicity, Z=0.18Z=0.18 Z⊙_\odot, is comparable to other SLSNe.Comment: Updated to match accepted version (ApJL

    The Production of Epistemic Culture and Agency during a First-Grade Engineering Design Unit in an Urban Emergent School

    Get PDF
    Primary school practices are often bound by traditions that perpetuate compliance and skills-based, decontextualized, rote memorization activities. These histories of practice, prevalent in schools serving mostly Black and Brown children, make it inordinately difficult for students to author themselves as knowledge builders (i.e., with epistemic agency), which is a form of injustice. Engineering is a potentially fertile context to support the creation of epistemic culture, whereby young students’ assets are recognized, named, and leveraged as they create and shape the group’s disciplinary knowledge. The authors investigated this potential. The primary research question was: How do first-grade students in an urban emergent school author themselves as epistemic agents during an engineering design unit? Using a social practice theory lens and ethnographic methods, the authors studied 29 days of a materials engineering unit focusing on the teacher’s epistemic commitments, implicit meanings of knowledge in classroom discourse, and practices that opened space for students’ epistemic agency. Data collection included fieldnotes and video of class activities and teacher and student interviews. Class discussions about the properties and uses of materials yielded a rich context for studying epistemic culture. The teacher’s epistemic commitments included an eschewing of disciplinary silos, recognizing the nonlinear nature of knowledge-building about engineering, and acknowledging children’s thinking as an asset for engineering knowledge production. Examples of students’ discursive moves demonstrating epistemic agency included: reminding others about the relevance of previous lessons to the current topic, mirroring the teacher’s instructional moves, claiming voice, space, time, and material resources for knowledge-building, translating one another’s ideas, and making unsolicited connections to their lives. Young children’s intellectual assets can too easily be overlooked in traditional learning contexts. This study demonstrates the affordances of responsive engineering instruction in recognizing and building on youths’ intellectual curiosity and enthusiasm for substantively contributing to the classroom’s knowledge-generating practices

    Leonardo's rule, self-similarity and wind-induced stresses in trees

    Full text link
    Examining botanical trees, Leonardo da Vinci noted that the total cross-section of branches is conserved across branching nodes. In this Letter, it is proposed that this rule is a consequence of the tree skeleton having a self-similar structure and the branch diameters being adjusted to resist wind-induced loads

    Spitzer Space Telescope Infrared Observations of the Binary Neutron Star Merger GW170817

    Full text link
    We present Spitzer Space Telescope 3.6 and 4.5 micron observations of the binary neutron star merger GW170817 at 43, 74, and 264 days post-merger. Using the final observation as a template, we uncover a source at the position of GW170817 at 4.5 micron with a brightness of 22.9+/-0.3 AB mag at 43 days and 23.8+/-0.3 AB mag at 74 days (the uncertainty is dominated by systematics from the image subtraction); no obvious source is detected at 3.6 micron to a 3-sigma limit of >23.3 AB mag in both epochs. The measured brightness is dimmer by a factor of about 2-3 times compared to our previously published kilonova model, which is based on UV, optical, and near-IR data at <30 days. However, the observed fading rate and color (m_{3.6}-m_{4.5}> 0 AB mag) are consistent with our model. We suggest that the discrepancy is likely due to a transition to the nebular phase, or a reduced thermalization efficiency at such late time. Using the Spitzer data as a guide, we briefly discuss the prospects of observing future binary neutron star mergers with Spitzer (in LIGO/Virgo Observing Run 3) and the James Webb Space Telescope (in LIGO/Virgo Observing Run 4 and beyond).Comment: 6 pages, 2 figures, submitted to ApJ

    How branching can change the conductance of ballistic semiconductor devices

    Full text link
    We demonstrate that branching of the electron flow in semiconductor nanostructures can strongly affect macroscopic transport quantities and can significantly change their dependence on external parameters compared to the ideal ballistic case even when the system size is much smaller than the mean free path. In a corner-shaped ballistic device based on a GaAs/AlGaAs two-dimensional electron gas we observe a splitting of the commensurability peaks in the magnetoresistance curve. We show that a model which includes a random disorder potential of the two-dimensional electron gas can account for the random splitting of the peaks that result from the collimation of the electron beam. The shape of the splitting depends on the particular realization of the disorder potential. At the same time magnetic focusing peaks are largely unaffected by the disorder potential.Comment: accepted for publication in Phys. Rev.

    On the Conditions for Neutron-Rich Gamma-Ray Burst Outflows

    Full text link
    We calculate the structure and neutron content of neutrino-heated MHD winds driven from the surface of newly-formed magnetars (``proto-magnetars'') and from the midplane of hyper-accreting disks, two of the possible central engines for gamma-ray bursts (GRBs) and hyper-energetic supernovae (SNe). Both the surface of proto-magnetars and the midplane of neutrino-cooled accretion flows (NDAFs) are electron degenerate and neutron-rich (neutron-to-proton ratio n/p >> 1). If this substantial free neutron excess is preserved to large radii in ultra-relativistic outflows, several important observational consequences may result. Weak interaction processes, however, can drive n/p to ~1 in the nondegenerate regions that obtain just above the surfaces of NDAFs and proto-magnetars. Our calculations show that mildly relativistic neutron-rich outflows from NDAFs are possible in the presence of a strong poloidal magnetic field. However, we find that neutron-rich winds possess a minimum mass-loss rate that likely precludes simultaneously neutron-rich and ultra-relativistic (Lorentz factor > 100) NDAF winds accompanying a substantial accretion power. In contrast, proto-magnetars are capable of producing neutron-rich long-duration GRB outflows ~10-30 seconds following core bounce for sub-millisecond rotation periods; such outflows would, however, accompany only extremely energetic events, in which the GRB + SN energy budget exceeds ~ 4e52 ergs. Neutron-rich highly relativistic outflows may also be produced during some short-duration GRBs by geometrically thick accretion disks formed from compact object mergers. The implications for r-process nucleosynthesis, optical transients due to non-relativistic neutron-rich winds, and Nickel production in proto-magnetar and NDAF winds are also briefly discussed.Comment: 24 pages, 7 figures, submitted to Ap

    A Decline in the X-ray through Radio Emission from GW170817 Continues to Support an Off-Axis Structured Jet

    Full text link
    We present new observations of the binary neutron star merger GW170817 at Δt≈220−290\Delta t\approx 220-290 days post-merger, at radio (Karl G. Jansky Very Large Array; VLA), X-ray (Chandra X-ray Observatory) and optical (Hubble Space Telescope; HST) wavelengths. These observations provide the first evidence for a turnover in the X-ray light curve, mirroring a decline in the radio emission at ≳5σ\gtrsim5\sigma significance. The radio-to-X-ray spectral energy distribution exhibits no evolution into the declining phase. Our full multi-wavelength dataset is consistent with the predicted behavior of our previously published models of a successful structured jet expanding into a low-density circumbinary medium, but pure cocoon models with a choked jet cannot be ruled out. If future observations continue to track our predictions, we expect that the radio and X-ray emission will remain detectable until ∌1000\sim 1000 days post-merger.Comment: Accepted to ApJL. Updated version includes new VLA observations extending through 2018 June

    Bkm sequences from the human X chromosome contain large clusters of GATA/GACA repeats

    Full text link
    In order to determine whether the regional localizations of Bkm repeats detected on the human X chromosome consisted of typical GATA/GACA repeats, clones were isolated, mapped, and sequenced. Nine Bkm-hybridizing clones from Kunkel's fluorescent-activated, cell-sorted X-chromosome library were all unique. Five were mapped in detail with restriction enzymes and the Bkm-hybridizing segments were localized. Confirmation of X chromosomal homology was obtained for 2 of the clones and Bkm segments from these 2 clones were sequenced. Seventeen contiguous GATA repeats were found in each clone and the overall repeat arrangement showed relatively few differences from previously sequenced Bkm sequences. These are the first sequences of human Bkm repeats. The results, when compared with previously published results, suggest that there may be significant differences between the organization of Bkm repeats on the human X and on the human Y chromosome.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/66402/1/j.1469-1809.1988.tb01094.x.pd
    • 

    corecore