506 research outputs found

    A Difference Version of Nori's Theorem

    Full text link
    We consider (Frobenius) difference equations over (F_q(s,t), phi) where phi fixes t and acts on F_q(s) as the Frobenius endomorphism. We prove that every semisimple, simply-connected linear algebraic group G defined over F_q can be realized as a difference Galois group over F_{q^i}(s,t) for some i in N. The proof uses upper and lower bounds on the Galois group scheme of a Frobenius difference equation that are developed in this paper. The result can be seen as a difference analogue of Nori's Theorem which states that G(F_q) occurs as (finite) Galois group over F_q(s).Comment: 29 page

    Developing an advanced module for back-contact solar cells

    Get PDF
    This paper proposes a novel concept for integrating ultrathin solar cells into modules. It is conceived as a method for fabricating solar panels starting from back-contact crystalline silicon solar cells. However, compared to the current state of the art in module manufacturing for back-contact solar cells, this novel concept aims at improvements in performance, reliability, and cost through the use of an alternative encapsulant, namely silicones as opposed to ethylene vinyl acetate, an alternative deposition technology, being wet coating as opposed to dry lamination; and alternative module-level metallization techniques, as opposed to cell-level tabbing-stringing or conductive foil interconnects. The process flow is proposed, and the materials and fabrication technologies are discussed. As the durability of the module, translated into the module's lifetime, is very important in the targeted application, namely solar cell modules, modeling and reliability testing results and considerations are presented to illustrate how the experimental development process may be guided by experience and theoretical derivations. Finally, feasibility is demonstrated in some first proofs of the concept, and an outlook is given pointing out the direction for further research

    Ergodicity criteria for non-expanding transformations of 2-adic spheres

    Full text link
    In the paper, we obtain necessary and sufficient conditions for ergodicity (with respect to the normalized Haar measure) of discrete dynamical systems on 2-adic spheres S2r(a)\mathbf S_{2^{-r}}(a) of radius 2r2^{-r}, r1r\ge 1, centered at some point aa from the ultrametric space of 2-adic integers Z2\mathbb Z_2. The map f ⁣:Z2Z2f\colon\mathbb Z_2\to\mathbb Z_2 is assumed to be non-expanding and measure-preserving; that is, ff satisfies a Lipschitz condition with a constant 1 with respect to the 2-adic metric, and ff preserves a natural probability measure on Z2\mathbb Z_2, the Haar measure μ2\mu_2 on Z2\mathbb Z_2 which is normalized so that μ2(Z2)=1\mu_2(\mathbb Z_2)=1

    Fuchs versus Painlev\'e

    Full text link
    We briefly recall the Fuchs-Painlev\'e elliptic representation of Painlev\'e VI. We then show that the polynomiality of the expressions of the correlation functions (and form factors) in terms of the complete elliptic integral of the first and second kind, K K and E E, is a straight consequence of the fact that the differential operators corresponding to the entries of Toeplitz-like determinants, are equivalent to the second order operator LE L_E which has E E as solution (or, for off-diagonal correlations to the direct sum of LE L_E and d/dt d/dt). We show that this can be generalized, mutatis mutandis, to the anisotropic Ising model. The singled-out second order linear differential operator LE L_E being replaced by an isomonodromic system of two third-order linear partial differential operators associated with Π1 \Pi_1, the Jacobi's form of the complete elliptic integral of the third kind (or equivalently two second order linear partial differential operators associated with Appell functions, where one of these operators can be seen as a deformation of LE L_E). We finally explore the generalizations, to the anisotropic Ising models, of the links we made, in two previous papers, between Painlev\'e non-linear ODE's, Fuchsian linear ODE's and elliptic curves. In particular the elliptic representation of Painlev\'e VI has to be generalized to an ``Appellian'' representation of Garnier systems.Comment: Dedicated to the : Special issue on Symmetries and Integrability of Difference Equations, SIDE VII meeting held in Melbourne during July 200

    Holonomy of the Ising model form factors

    Full text link
    We study the Ising model two-point diagonal correlation function C(N,N) C(N,N) by presenting an exponential and form factor expansion in an integral representation which differs from the known expansion of Wu, McCoy, Tracy and Barouch. We extend this expansion, weighting, by powers of a variable λ\lambda, the jj-particle contributions, fN,N(j) f^{(j)}_{N,N}. The corresponding λ \lambda extension of the two-point diagonal correlation function, C(N,N;λ) C(N,N; \lambda), is shown, for arbitrary λ\lambda, to be a solution of the sigma form of the Painlev{\'e} VI equation introduced by Jimbo and Miwa. Linear differential equations for the form factors fN,N(j) f^{(j)}_{N,N} are obtained and shown to have both a ``Russian doll'' nesting, and a decomposition of the differential operators as a direct sum of operators equivalent to symmetric powers of the differential operator of the elliptic integral E E. Each fN,N(j) f^{(j)}_{N,N} is expressed polynomially in terms of the elliptic integrals E E and K K. The scaling limit of these differential operators breaks the direct sum structure but not the ``Russian doll'' structure. The previous λ \lambda-extensions, C(N,N;λ) C(N,N; \lambda) are, for singled-out values λ=cos(πm/n) \lambda= \cos(\pi m/n) (m,nm, n integers), also solutions of linear differential equations. These solutions of Painlev\'e VI are actually algebraic functions, being associated with modular curves.Comment: 39 page

    Improving Access to Mental Health Care and Psychosocial Support within a Fragile Context: A Case Study from Afghanistan

    Get PDF
    As one article in a series on Global Mental Health Practice, Peter Ventevogel and colleagues provide a case study of their efforts to integrate brief, practice-oriented mental health training into the Afghanistan health care system at a time when the system was being rebuilt from scratch
    corecore