262 research outputs found

    Observational signatures of lithium depletion in the metal-poor globular cluster NGC6397

    Full text link
    The "stellar" solution to the cosmological lithium problem proposes that surface depletion of lithium in low-mass, metal-poor stars can reconcile the lower abundances found for Galactic halo stars with the primordial prediction. Globular clusters are ideal environments for studies of the surface evolution of lithium, with large number statistics possible to obtain for main sequence stars as well as giants. We discuss the Li abundances measured for >450 stars in the globular cluster NGC6397, focusing on the evidence for lithium depletion and especially highlighting how the inferred abundances and interpretations are affected by early cluster self-enrichment and systematic uncertainties in the effective temperature determination.Comment: 6 pages, 2 figures, conference proceedings for IAU symposium 26

    Classical Cepheids, what else?

    Full text link
    We present new and independent estimates of the distances to the Magellanic Clouds (MCs) using near-infrared (NIR) and optical--NIR period--Wesenheit (PW) relations. The slopes of the PW relations are, within the dispersion, linear over the entire period range and independent of metal content. The absolute zero points were fixed using Galactic Cepheids with distances based on the infrared surface-brightness method. The true distance modulus we found for the Large Magellanic Cloud---(m−M)0=18.48±0.01±0.10(m-M)_0 = 18.48 \pm 0.01 \pm 0.10 mag---and the Small Magellanic Cloud---(m−M)0=18.94±0.01±0.10(m-M)_0 = 18.94 \pm 0.01 \pm 0.10 mag---agree quite well with similar distance determinations based on robust distance indicators. We also briefly discuss the evolutionary and pulsation properties of MC Cepheids

    Beryllium in the Ultra-Lithium-Deficient,Metal-Poor Halo Dwarf, G186-26

    Full text link
    The vast majority of low-metal halo dwarfs show a similar amount of Li; this has been attributed to the Li that was produced in the Big Bang. However, there are nine known halo stars with T >> 5900 K and [Fe/H] << −-1.0 that are ultra-Li-deficient. We have looked for Be in the very low metallicity star, G 186-26 at [Fe/H] = −-2.71, which is one of the ultra-Li-deficient stars. This star is also ultra-Be deficient. Relative to Be in the Li-normal stars at [Fe/H] = −-2.7, G 182-26 is down in Be by more than 0.8 dex. Of two potential causes for the Li-deficiency -- mass-transfer in a pre-blue straggler or extra rotationally-induced mixing in a star that was initially a very rapid rotator -- the absence of Be favors the blue-straggler hypothesis, but the rotation model cannot be ruled-out completely.Comment: Accepted for Ap.J. Letters 10 pages, 4 figure

    How Events Come Into Being: EEQT, Particle Tracks, Quantum Chaos, and Tunneling Time

    Get PDF
    In sections 1 and 2 we review Event Enhanced Quantum Theory (EEQT). In section 3 we discuss applications of EEQT to tunneling time, and compare its quantitative predictions with other approaches, in particular with B\"uttiker-Larmor and Bohm trajectory approach. In section 4 we discuss quantum chaos and quantum fractals resulting from simultaneous continuous monitoring of several non-commuting observables. In particular we show self-similar, non-linear, iterated function system-type, patterns arising from quantum jumps and from the associated Markov operator. Concluding remarks pointing to possible future development of EEQT are given in section 5.Comment: latex, 27 pages, 7 postscript figures. Paper submitted to Proc. Conference "Mysteries, Puzzles And Paradoxes In Quantum Mechanics, Workshop on Entanglement And Decoherence, Palazzo Feltrinelli, Gargnano, Garda Lake, Italy, 20-25 September, 199

    On the distance of the Magellanic Clouds using Cepheid NIR and optical-NIR Period Wesenheit Relations

    Full text link
    We present the largest near-infrared (NIR) data sets, JHKsJHKs, ever collected for classical Cepheids in the Magellanic Clouds (MCs). We selected fundamental (FU) and first overtone (FO) pulsators, and found 4150 (2571 FU, 1579 FO) Cepheids for Small Magellanic Cloud (SMC) and 3042 (1840 FU, 1202 FO) for Large Magellanic Cloud (LMC). Current sample is 2--3 times larger than any sample used in previous investigations with NIR photometry. We also discuss optical VIVI photometry from OGLE-III. NIR and optical--NIR Period-Wesenheit (PW) relations are linear over the entire period range (0.0<log⁥PFU≀1.650.0<\log P_{\rm FU} \le1.65 ) and their slopes are, within the intrinsic dispersions, common between the MCs. These are consistent with recent results from pulsation models and observations suggesting that the PW relations are minimally affected by the metal content. The new FU and FO PW relations were calibrated using a sample of Galactic Cepheids with distances based on trigonometric parallaxes and Cepheid pulsation models. By using FU Cepheids we found a true distance moduli of 18.45±0.02(random)±0.10(systematic)18.45\pm0.02{\rm(random)}\pm0.10{\rm(systematic)} mag (LMC) and 18.93±0.02(random)±0.10(systematic)18.93\pm0.02{\rm(random)}\pm0.10{\rm(systematic)} mag (SMC). These estimates are the weighted mean over ten PW relations and the systematic errors account for uncertainties in the zero-point and in the reddening law. We found similar distances using FO Cepheids (18.60±0.03(random)±0.10(systematic)18.60\pm0.03{\rm(random)}\pm0.10{\rm(systematic)} mag [LMC] and 19.12±0.03(random)±0.10(systematic)19.12\pm0.03{\rm(random)}\pm0.10{\rm(systematic)} mag [SMC]). These new MC distances lead to the relative distance, ΔΌ=0.48±0.03\Delta\mu=0.48\pm0.03 mag (FU, log⁥P=1\log P=1) and ΔΌ=0.52±0.03\Delta\mu=0.52\pm0.03 mag (FO, log⁥P=0.5\log P=0.5),which agrees quite well with previous estimates based on robust distance indicators.Comment: 17 pages, 7 figure

    On the metallicity distribution of classical Cepheids in the Galactic inner disk

    Get PDF
    We present homogeneous and accurate iron abundances for almost four dozen (47) of Galactic Cepheids using high-spectral resolution (R∌\sim40,000) high signal-to-noise ratio (S/N ≄\ge 100) optical spectra collected with UVES at VLT. A significant fraction of the sample (32) is located in the inner disk (RG lele 6.9 kpc) and for half of them we provide new iron abundances. Current findings indicate a steady increase in iron abundance when approaching the innermost regions of the thin disk. The metallicity is super-solar and ranges from 0.2 dex for RG ∌\sim 6.5 kpc to 0.4 dex for RG ∌\sim 5.5 kpc. Moreover, we do not find evidence of correlation between iron abundance and distance from the Galactic plane. We collected similar data available in the literature and ended up with a sample of 420 Cepheids. Current data suggest that the mean metallicity and the metallicity dispersion in the four quadrants of the Galactic disk attain similar values. The first-second quadrants show a more extended metal-poor tail, while the third-fourth quadrants show a more extended metal-rich tail, but the bulk of the sample is at solar iron abundance. Finally, we found a significant difference between the iron abundance of Cepheids located close to the edge of the inner disk ([Fe/H]∌\sim0.4) and young stars located either along the Galactic bar or in the nuclear bulge ([Fe/H]∌\sim0). Thus suggesting that the above regions have had different chemical enrichment histories. The same outcome applies to the metallicity gradient of the Galactic bulge, since mounting empirical evidence indicates that the mean metallicity increases when moving from the outer to the inner bulge regions.Comment: 10 pages, 5 figures; Corrected typos, corrected Table

    Implications of a new temperature scale for halo dwarfs on LiBeB and chemical evolution

    Full text link
    Big bang nucleosynthesis (BBN) and the cosmic baryon density from cosmic microwave background anisotropies together predict a primordial Li7 abundance a factor of 2--3 higher than that observed in galactic halo dwarf stars. A recent analysis of Li7 observations in halo stars, using significantly higher surface temperature for these stars, found a higher Li plateau abundance. These results go a long way towards resolving the discrepancy with BBN. Here, we examine the implications of the higher surface temperatures on the abundances of Be and B which are thought to have been produced in galactic cosmic-ray nucleosynthesis by spallation of CNO together with Li (produced in alpha + alpha collisions). While the Be abundance is not overly sensitive to the surface temperature, the derived B abundances and more importantly the derived oxygen abundances are very temperature dependent. If the new temperature scale is correct, the implied increased abundances of these elements poses a serious challenge to models of galactic cosmic ray nucleosynthesis and galactic chemical evolution.Comment: 23 pages, 10 eps figure

    The early days of the Sculptor dwarf spheroidal galaxy

    Get PDF
    We present the high resolution spectroscopic study of five -3.9<=[Fe/H]<=-2.5 stars in the Local Group dwarf spheroidal, Sculptor, thereby doubling the number of stars with comparable observations in this metallicity range. We carry out a detailed analysis of the chemical abundances of alpha, iron peak, light and heavy elements, and draw comparisons with the Milky Way halo and the ultra faint dwarf stellar populations. We show that the bulk of the Sculptor metal-poor stars follows the same trends in abundance ratios versus metallicity as the Milky Way stars. This suggests similar early conditions of star formation and a high degree of homogeneity of the interstellar medium. We find an outlier to this main regime, which seems to miss the products of the most massive of the TypeII supernovae. In addition to its value to help refining galaxy formation models, this star provides clues to the production of cobalt and zinc. Two of our sample stars have low odd-to-even barium isotope abundance ratios, suggestive of a fair proportion of s-process; we discuss the implication for the nucleosynthetic origin of the neutron capture elements.Comment: Replacement after language editio
    • 

    corecore