182 research outputs found

    The immune gene repertoire encoded in the purple sea urchin genome

    Get PDF
    Echinoderms occupy a critical and largely unexplored phylogenetic vantage point from which to infer both the early evolution of bilaterian immunity and the underpinnings of the vertebrate adaptive immune system. Here we present an initial survey of the purple sea urchin genome for genes associated with immunity. An elaborate repertoire of potential immune receptors, regulators and effectors is present, including unprecedented expansions of innate pathogen recognition genes. These include a diverse array of 222 Toll-like receptor (TLR) genes and a coordinate expansion of directly associated signaling adaptors. Notably, a subset of sea urchin TLR genes encodes receptors with structural characteristics previously identified only in protostomes. A similarly expanded set of 203 NOD/NALP-like cytoplasmic recognition proteins is present. These genes have previously been identified only in vertebrates where they are represented in much lower numbers. Genes that mediate the alternative and lectin complement pathways are described, while gene homologues of the terminal pathway are not present. We have also identified several homologues of genes that function in jawed vertebrate adaptive immunity. The most striking of these is a gene cluster with similarity to the jawed vertebrate Recombination Activating Genes 1 and 2 (RAG1/2). Sea urchins are long-lived, complex organisms and these findings reveal an innate immune system of unprecedented complexity. Whether the presumably intense selective processes that molded these gene families also gave rise to novel immune mechanisms akin to adaptive systems remains to be seen. The genome sequence provides immediate opportunities to apply the advantages of the sea urchin model toward problems in developmental and evolutionary immunobiology

    A Clustering Approach for Autism based Autistic Trait Classification

    Get PDF
    Machine learning (ML) techniques can be utilized by physicians, clinicians, as well as other users, to discover Autism Spectrum Disorder (ASD) symptoms based on historical cases and controls to enhance autism screening efficiency and accuracy. The aim of this study is to improve the performance of detecting ASD traits by reducing data dimensionality and eliminating redundancy in the autism dataset. To achieve this, a new semi-supervised ML framework approach called Clustering-based Autistic Trait Classification (CATC) is proposed that uses a clustering technique and validation of the classifiers is done by classification techniques. The proposed method identifies potential autism cases based on their similarity traits as opposed to a scoring function used by many ASD screening tools. Empirical results on different datasets involving children, adolescents, and adults were verified and compared to other common machine learning classification techniques. The results showed that CATC offers classifiers with higher predictive accuracy, sensitivity, and specificity rates than those of other intelligent classification approaches such as Artificial Neural Network (ANN), Random Forest, and Random Trees, and Rule Induction. These classifiers are useful as they are exploited by diagnosticians and other stakeholders involved in ASD screening

    Identification and Characterization of the Lamprey High-Mobility Group Box 1 Gene

    Get PDF
    High-mobility group box 1 (HMGB1), a highly conserved DNA-binding protein, plays an important role in maintaining nucleosome structures, transcription, and inflammation. We identified a homolog of HMGB1 in the Japanese lamprey (Lampetra japonica). The Lampetra japonica HMGB1 gene (Lj-HMGB1) has over 70% sequence identity with its homologs in jawed vertebrates. Despite the reasonably high sequence identity with other HMGB1 proteins, Lj-HMGB1 did not group together with these proteins in a phylogenetic analysis. We examined Lj-HMGB1 expression in lymphocyte-like cells, and the kidneys, heart, gills, and intestines of lampreys before and after the animals were challenged with lipopolysaccharide (LPS) and concanavalin A (ConA). Lj-HMGB1 was initially expressed at a higher level in the heart, but after treatment with LPS and ConA only the gills demonstrated a significant up-regulation of expression. The recombinant Lj-HMGB1 (rLj-HMGB1) protein bound double-stranded DNA and induced the proliferation of human adenocarcinoma cells to a similar extent as human HMGB1. We further revealed that Lj-HMGB1 was able to induce the production of tumor necrosis factor-α (TNF-α), a pro-inflammatory mediator, in activated human acute monocytic leukemia cells. These results suggest that lampreys use HMGB1 to activate their innate immunity for the purpose of pathogen defense

    The Identification of Lymphocyte-Like Cells and Lymphoid-Related Genes in Amphioxus Indicates the Twilight for the Emergency of Adaptive Immune System

    Get PDF
    To seek evidence of a primitive adaptive immune system (AIS) before vertebrate, we examined whether lymphocytes or lymphocyte-like cells and the related molecules participating in the lymphocyte function existed in amphioxus. Anatomical analysis by electron microscopy revealed the presence of lymphocyte-like cells in gills, and these cells underwent morphological changes in response to microbial pathogens that are reminiscent of those of mammalian lymphocytes executing immune response to microbial challenge. In addition, a systematic comparative analysis of our cDNA database of amphioxus identified a large number of genes whose vertebrate counterparts are involved in lymphocyte function. Among these genes, several genes were found to be expressed in the vicinity of the lymphocyte-like cells by in situ hybridization and up-regulated after exposure to microbial pathogens. Our findings in the amphioxus indicate the twilight for the emergency of AIS before the invertebrate-vertebrate transition during evolution

    Pontiac fever: an operational definition for epidemiological studies

    Get PDF
    BACKGROUND: Pontiac fever is usually described in epidemic settings. Detection of Pontiac fever is a marker of an environmental contamination by Legionella and should thereby call for prevention measures in order to prevent outbreak of Legionnaire's disease. The objective of this study is to propose an operational definition of Pontiac fever that is amenable to epidemiological surveillance and investigation in a non epidemic setting. METHODS: A population of 560 elderly subjects residing in 25 nursing homes was followed during 4 months in order to assess the daily incidence of symptoms associated, in the literature, with Pontiac fever. The water and aerosol of one to 8 showers by nursing home were characterized combining conventional bacterial culture of Legionella and the Fluorescence In Situ Hybridization (FISH) technique that used oligonucleotides probes specific for Legionellaceae. A definition of Pontiac fever was devised based on clinical symptoms described in epidemic investigations and on their timing after the exposure event. The association between incidence of Pontiac fever and shower contamination levels was evaluated to test the relevance of this definition. RESULTS: The proposed definition of Pontiac fever associated the following criteria: occurrence of at least one symptom among headache, myalgia, fever and shivers, possibly associated with other 'minor' symptoms, within three days after a shower contaminated by Legionella, during a maximum of 8 days (minimum 2 days). 23 such cases occurred during the study (incidence rate: 0.125 cases per person-year [95% CI: 0.122–0.127]). A concentration of Legionella in water equal to or greater than 10(4).L(-1 )(FISH method) was associated with a significant increase of incidence of Pontiac fever (p = 0.04). CONCLUSION: Once validated in other settings, the proposed definition of Pontiac fever might be used to develop epidemiological surveillance and help draw attention on sources of Legionella

    In-home evaluation of efficacy and titration of a mandibular advancement device for obstructive sleep apnea

    Get PDF
    There is increasing evidence that mandibular advancement devices (MADs) can be an effective treatment for some patients with obstructive sleep apnea, a highly prevalent chronic disease. In this study, the objectives were to objectively assess the effectiveness of MAD therapy using a limited channel recorder, and to develop a model for identifying patients who may be appropriate for MAD therapy as the initial treatment option. Thirty patients were prospectively recruited and studied at two independent dentist offices and the participants’ homes. Subjects wore the ARES Unicorder for two nights before insertion of the MAD, and again when the dentist determined that the patient had reached the titration endpoint. Self-reported measures of depression, sleepiness, and quality of life were obtained pre- and posttreatment. The reviewer was blinded to the study status while the physiological signals were being visually inspected. Significant reductions in the apnea/hypopnea index (AHI), hypoxemia measures, and snoring level were observed posttreatment. Twenty-seven of the 30 (90%) patients had a posttreatment AHI (using a 4% desaturation for hypopneas) below a clinical cut-off of 10. All but one patient (97%) exhibited at least a 50% decrease in AHI or had a posttreatment AHI ≤ 10. Significant differences in body mass index, weight, and neck circumference in patients with posttreatment AHIs above and below a clinical cut-off of five were identified. The linear regression used to predict the posttreatment AHI using pretreatment data resulted in an R2 of 0.68. The model correctly predicted two patients who were unable to obtain a posttreatment AHI of 10 or less. This study was designed to demonstrate two models of collaboration between a dental sleep medicine specialist and a sleep medicine physician in the monitoring of a patient treated with a MAD. The outcome data suggest that the limited channel recording system can be used as an alternative to laboratory polysomnography to reduce the cost of MAD treatment, and to improve the quality and consistency of posttreatment patient care

    Somatic diversification of variable lymphocyte receptors in the agnathan sea lamprey

    Full text link
    Although jawless vertebrates are apparently capable of adaptive immune responses, they have not been found to possess the recombinatorial antigen receptors shared by all jawed vertebrates. Our search for the phylogenetic roots of adaptive immunity in the lamprey has instead identified a new type of variable lymphocyte receptors (VLRs) composed of highly diverse leucine-rich repeats (LRR) sandwiched between amino- and carboxy-terminal LRRs. An invariant stalk region tethers the VLRs to the cell surface by means of a glycosyl-phosphatidyl-inositol anchor. To generate rearranged VLR genes of the diversity necessary for an anticipatory immune system, the single lamprey VLR locus contains a large bank of diverse LRR cassettes, available for insertion into an incomplete germline VLR gene. Individual lymphocytes express a uniquely rearranged VLR gene in monoallelic fashion. Different evolutionary strategies were thus used to generate highly diverse lymphocyte receptors through rearrangement of LRR modules in agnathans ( jawless fish) and of immunoglobulin gene segments in gnathostomes ( jawed vertebrates).Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/62870/1/nature02740.pd
    • …
    corecore