186 research outputs found
Collective Two-Atom Effects and Trapping States in the Micromaser
We investigate signals of trapping states in the micromaser system in terms
of the average number of cavity photons as well as a suitably defined
correlation length of atoms leaving the cavity. In the description of
collective two-atom effects we allow the mean number of pump atoms inside the
cavity during the characteristic atomic cavity transit time to be as large as
of order one. The master equation we consider, which describes the micromaser
including collective two-atom effects, still exhibits trapping states for even
for a mean number of atoms inside the cavity close to one. We, however, argue
more importantly that the trapping states are more pronounced in terms of the
correlation length as compared to the average number of cavity photons, i.e. we
suggest that trapping states can be more clearly revealed experimentally in
terms of the atom correlation length. For axion detection in the micromaser
this observable may therefore be an essential ingredient.Comment: 5 figure
Absolute frequency measurements of 85Rb nF7/2 Rydberg states using purely optical detection
A three-step laser excitation scheme is used to make absolute frequency
measurements of highly excited nF7/2 Rydberg states in 85Rb for principal
quantum numbers n=33-100. This work demonstrates the first absolute frequency
measurements of rubidium Rydberg levels using a purely optical detection
scheme. The Rydberg states are excited in a heated Rb vapour cell and Doppler
free signals are detected via purely optical means. All of the frequency
measurements are made using a wavemeter which is calibrated against a GPS
disciplined self-referenced optical frequency comb. We find that the measured
levels have a very high frequency stability, and are especially robust to
electric fields. The apparatus has allowed measurements of the states to an
accuracy of 8.0MHz. The new measurements are analysed by extracting the
modified Rydberg-Ritz series parameters.Comment: 12 pages, 5 figures, submitted to New. J. Phy
Determinisitic Optical Fock State Generation
We present a scheme for the deterministic generation of N-photon Fock states
from N three-level atoms in a high-finesse optical cavity. The method applies
an external laser pulsethat generates an -photon output state while
adiabatically keeping the atom-cavity system within a subspace of optically
dark states. We present analytical estimates of the error due to amplitude
leakage from these dark states for general N, and compare it with explicit
results of numerical simulations for N \leq 5. The method is shown to provide a
robust source of N-photon states under a variety of experimental conditions and
is suitable for experimental implementation using a cloud of cold atoms
magnetically trapped in a cavity. The resulting N-photon states have potential
applications in fundamental studies of non-classical states and in quantum
information processing.Comment: 25 pages, 9 figure
Creating massive entanglement of Bose condensed atoms
We propose a direct, coherent coupling scheme that can create massively
entangled states of Bose-Einstein condensed atoms. Our idea is based on an
effective interaction between two atoms from coherent Raman processes through a
(two atom) molecular intermediate state. We compare our scheme with other
recent proposals for generation of massive entanglement of Bose condensed
atoms.Comment: 5 pages, 3 figures; Updated figure 3(a), original was "noisy
Framing the Issues: Moral Distress in Health Care
Moral distress in health care has been identified as a growing concern and a focus of research in nursing and health care for almost three decades. Researchers and theorists have argued that moral distress has both short and long-term consequences. Moral distress has implications for satisfaction, recruitment and retention of health care providers and implications for the delivery of safe and competent quality patient care. In over a decade of research on ethical practice, registered nurses and other health care practitioners have repeatedly identified moral distress as a concern and called for action. However, research and action on moral distress has been constrained by lack of conceptual clarity and theoretical confusion as to the meaning and underpinnings of moral distress. To further examine these issues and foster action on moral distress, three members of the University of Victoria/University of British Columbia (UVIC/UVIC) nursing ethics research team initiated the development and delivery of a multi-faceted and interdisciplinary symposium on Moral Distress with international experts, researchers, and practitioners. The goal of the symposium was to develop an agenda for action on moral distress in health care. We sought to develop a plan of action that would encompass recommendations for education, practice, research and policy. The papers in this special issue of HEC Forum arose from that symposium. In this first paper, we provide an introduction to moral distress; make explicit some of the challenges associated with theoretical and conceptual constructions of moral distress; and discuss the barriers to the development of research, education, and policy that could, if addressed, foster action on moral distress in health care practice. The following three papers were written by key international experts on moral distress, who explore in-depth the issues in three arenas: education, practice, research. In the fifth and last paper in the series, we highlight key insights from the symposium and the papers in the series, propose to redefine moral distress, and outline directions for an agenda for action on moral distress in health care
Solvable model of a strongly-driven micromaser
We study the dynamics of a micromaser where the pumping atoms are strongly
driven by a resonant classical field during their transit through the cavity
mode. We derive a master equation for this strongly-driven micromaser,
involving the contributions of the unitary atom-field interactions and the
dissipative effects of a thermal bath. We find analytical solutions for the
temporal evolution and the steady-state of this system by means of phase-space
techniques, providing an unusual solvable model of an open quantum system,
including pumping and decoherence. We derive closed expressions for all
relevant expectation values, describing the statistics of the cavity field and
the detected atomic levels. The transient regime shows the build-up of mixtures
of mesoscopic fields evolving towards a superpoissonian steady-state field
that, nevertheless, yields atomic correlations that exhibit stronger
nonclassical features than the conventional micromaser.Comment: 9 pages, 16 figures. Submitted for publicatio
Climbing the Jaynes-Cummings Ladder and Observing its Sqrt(n) Nonlinearity in a Cavity QED System
The already very active field of cavity quantum electrodynamics (QED),
traditionally studied in atomic systems, has recently gained additional
momentum by the advent of experiments with semiconducting and superconducting
systems. In these solid state implementations, novel quantum optics experiments
are enabled by the possibility to engineer many of the characteristic
parameters at will. In cavity QED, the observation of the vacuum Rabi mode
splitting is a hallmark experiment aimed at probing the nature of matter-light
interaction on the level of a single quantum. However, this effect can, at
least in principle, be explained classically as the normal mode splitting of
two coupled linear oscillators. It has been suggested that an observation of
the scaling of the resonant atom-photon coupling strength in the
Jaynes-Cummings energy ladder with the square root of photon number n is
sufficient to prove that the system is quantum mechanical in nature. Here we
report a direct spectroscopic observation of this characteristic quantum
nonlinearity. Measuring the photonic degree of freedom of the coupled system,
our measurements provide unambiguous, long sought for spectroscopic evidence
for the quantum nature of the resonant atom-field interaction in cavity QED. We
explore atom-photon superposition states involving up to two photons, using a
spectroscopic pump and probe technique. The experiments have been performed in
a circuit QED setup, in which ultra strong coupling is realized by the large
dipole coupling strength and the long coherence time of a superconducting qubit
embedded in a high quality on-chip microwave cavity.Comment: ArXiv version of manuscript published in Nature in July 2008, 5
pages, 5 figures, hi-res version at
http://www.finkjohannes.com/SqrtNArxivPreprint.pd
Single Atom and Two Atom Ramsey Interferometry with Quantized Fields
Implications of field quantization on Ramsey interferometry are discussed and
general conditions for the occurrence of interference are obtained.
Interferences do not occur if the fields in two Ramsey zones have precise
number of photons. However in this case we show how two atom (like two photon)
interferometry can be used to discern a variety of interference effects as the
two independent Ramsey zones get entangled by the passage of first atom.
Generation of various entangled states like |0,2>+|2,0> are discussed and in
far off resonance case generation of entangled state of two coherent states is
discussed.Comment: 20 pages, 5 figures, revised version. submitted to Phys. Rev.
- …