research

Collective Two-Atom Effects and Trapping States in the Micromaser

Abstract

We investigate signals of trapping states in the micromaser system in terms of the average number of cavity photons as well as a suitably defined correlation length of atoms leaving the cavity. In the description of collective two-atom effects we allow the mean number of pump atoms inside the cavity during the characteristic atomic cavity transit time to be as large as of order one. The master equation we consider, which describes the micromaser including collective two-atom effects, still exhibits trapping states for even for a mean number of atoms inside the cavity close to one. We, however, argue more importantly that the trapping states are more pronounced in terms of the correlation length as compared to the average number of cavity photons, i.e. we suggest that trapping states can be more clearly revealed experimentally in terms of the atom correlation length. For axion detection in the micromaser this observable may therefore be an essential ingredient.Comment: 5 figure

    Similar works

    Available Versions

    Last time updated on 05/06/2019