155 research outputs found

    تحليل وتوقعات استهلاك الطاقة في القطاع المنزلي في الضفة الغربية وقطاع غزة

    Get PDF
    Energy sector is considered to be one of the most important components of a country's infrastructure and a key indicator of the standard of living. Energy consumption reflects upon population growth, living standard, and the level of development in all aspects of life. It is of utmost importance to study the current situation of energy consumption for developing energy plans and policies and to provide the decision makers with adequate tools for optimal management of the electrical sectors. This paper presents the current energy situation in GS and WB. Scenarios for future consumption are developed. The Long-range Energy Alternatives Planning model (LEAP) is the simulation model used for the analysis of the data. The approach for exploring the energy sector in WB and GS consists of a historical retrospective study with a limited-time data series. : . . . . The Long-range Energy Alternatives Planning model (LEAP). .يعتبر قطاع الطاقة من أهم مكونات البنية التحتية للبلاد و مؤشر مهم لمستوي المعيشة. استهلاك الطاقة يعكس تأثير النمو السكاني والمستوى المعيشي وارتفاع مستوى التنمية في مجالات الحياة المختلفة. دراسة الاتجاه العام الحالي لمؤثرات و طرق استهلاك الطاقة في قطاع غزة و الضفة الغربية ضروري جدا لتحديد خطط و سياسات الطاقة المستقبلية و لتعطي أصحاب القرار الأدوات الفعالة للإدارة المثلي لقطاع الطاقة. ورقة العمل هذه تقدم دراسة عن استهلاك الطاقة في قطاع غزة و الضفة الغربية و تقدم تصور عن الاستهلاك المستقبلي. البرنامج المستخدم لتحليل البيانات ودراستها هوThe Long-range Energy Alternatives Planning model (LEAP). سير قطاع الطاقة في قطاع غزة و الضفة الغربية اعتمد علي طريقة الاسترجاع التاريخي و المعلومات الزمنية المحدودة

    A Novel Elliptically Shaped Compact Planar Ultra-Wideband Antenna

    Get PDF
    A low profile planar elliptically shaped antenna for ultra-wide band applications is presented. The antenna consists of a conducting patch, a dielectric substrate and a partial conducting ground plane. The patch has the shape of modified elliptical rings and excited using a rectangular edge-fed microstrip feed line. The antenna size is 45mm x 23 mm. The impedance bandwidth of the antenna extends from 3.5 GHz to 10.6 GHz, thus meeting the UWB system requirement

    Anti-reflection Coating Solar Cell Structure Based on Conductive Nanoparticles

    Get PDF
    In this paper, we investigate for the first time antireflection coating structure for silicon solar cell where CNPs (conductive nanoparticles) film layer is sandwiched between a semi-infinite glass cover layer and a semi-infinite silicon substrate. The transmission and reflection coefficients are derived by the transfer matrix method and simulated for values of unit cell sizes, gab widths in visible and near-infrared radiation. In addition, the absorption, reflection coefficients are examined for several angles of incidence of the TE (transverse electric) polarized guided waves. Numerical results provide an extremely high absorption, if nanoparticles are suitably located and sized. The absorptivity of the structure achieves 100% at gab width of 3.5 nm and CNP layer thickness of 150 nm

    Investigation of the Effect of Zn Ions Concentration on DC Conductivity and Curie Temperature of Ni-spinel Ferrite

    Get PDF
    The mixed polycrystalline ferrites Ni1-sZnsFe2O4, were obtained using the standard double sintering technique by mixing high purity of metal oxides NiO, ZnO and Fe2O3 for different concentration of Zn ion. DC electric properties and inductance of the prepared samples were carried out over the temperature range of 300 up to 773 K using two probe method and LCR meter. The thermal dependence of DC electrical conductivity (σDC) for the mixed Ni-Zn spinel ferrites with different Zn concentrations was investigated. In general, σDC found to be increased with both increasing temperature and Zn content. The thermal measurement of σDC confirmed the semiconductor behavior for Zn substituted Ni spinel ferrites and follows Arrhenius relation in the investigated temperature region. The variation of σDC indicated that the conduction mechanism was correlated to a small polaron-hopping. The activation energies of both regions, ferrimagnetic (Ef) and paramagnetic (Ep) and △E=Ep-Ef for all studied compositions were estimated. The calculated activation energy in the ferrimagnetic region was found to be less than that in paramagnetic region. The influenced of increased Zn ions on σDCand activation energies was investigated. From these results, it is found that △E and σDC decrease with increasing of Zn content. The inductance measurements for the prepared samples show constant values at low temperature range up to Curie temperature (TC), then the inductance decrease sharply except for ZnFe2O4 which confirmed that it is a paramagnetic at room temperature. The Curie temperature was determined from σDC and inductance measurement, which was found to be nearly the same and they decreased with increasing of Zn ions. The experimental results reveal that the electric properties and inductance, which can be dramatically changed by substitution of the non-magnetic Zn ions in Ni spinel ferrite. These improved properties of the mixed Ni-Zn spinel ferrite suggest uses as a soft ferrite material, which is proved an interest material for technological and scientific applications.The mixed polycrystalline ferrites Ni1-sZnsFe2O4, were obtained using the standard double sintering technique by mixing high purity of metal oxides NiO, ZnO and Fe2O3 for different concentration of Zn ion. DC electric properties and inductance of the prepared samples were carried out over the temperature range of 300 up to 773 K using two probe method and LCR meter. The thermal dependence of DC electrical conductivity (σDC) for the mixed Ni-Zn spinel ferrites with different Zn concentrations was investigated. In general, σDC found to be increased with both increasing temperature and Zn content. The thermal measurement of σDC confirmed the semiconductor behavior for Zn substituted Ni spinel ferrites and follows Arrhenius relation in the investigated temperature region. The variation of σDC indicated that the conduction mechanism was correlated to a small polaron-hopping. The activation energies of both regions, ferrimagnetic (Ef) and paramagnetic (Ep) and △E=Ep-Ef for all studied compositions were estimated. The calculated activation energy in the ferrimagnetic region was found to be less than that in paramagnetic region. The influenced of increased Zn ions on σDCand activation energies was investigated. From these results, it is found that △E and σDC decrease with increasing of Zn content. The inductance measurements for the prepared samples show constant values at low temperature range up to Curie temperature (TC), then the inductance decrease sharply except for ZnFe2O4 which confirmed that it is a paramagnetic at room temperature. The Curie temperature was determined from σDC and inductance measurement, which was found to be nearly the same and they decreased with increasing of Zn ions. The experimental results reveal that the electric properties and inductance, which can be dramatically changed by substitution of the non-magnetic Zn ions in Ni spinel ferrite. These improved properties of the mixed Ni-Zn spinel ferrite suggest uses as a soft ferrite material, which is proved an interest material for technological and scientific applications

    FT-IR Studies of Nickel Substituted Polycrystalline Zinc Spinel Ferrites for Structural and Vibrational Investigations

    Get PDF
    FT-IR spectra of Ni1-sZnsFe2O4 spinel ferrite, s changed by 0.2 according to 0.0 s 1.0, have been analyzed in the frequency range (350−1000) cm-1. Six polycrystalline ferrites samples were synthesized using the conventional standard double sintering ceramic method. Two main absorption bands were observed, their positions were found to be strongly dependent on s-value. The high frequency band in the range 550-600 cm−1 and a low frequency band at around 400 cm−1 were assigned to tetrahedral Td and octahedral Oh sites, respectively, of spinel lattice. Force constant (FC) was calculated for Tdand Oh sites and was found to decrease with increasing Zn ions. Threshold frequency nth for the electronic transition was determined and found to increase with increasing Zn ions. Cations distribution for the prepared mixed ferrite was concluded based on the FT-IR spectra. The ionic radii for each site were correlated to the cations distribution of the given ferrite.FT-IR spectra of Ni1-sZnsFe2O4 spinel ferrite, s changed by 0.2 according to 0.0 s 1.0, have been analyzed in the frequency range (350−1000) cm-1. Six polycrystalline ferrites samples were synthesized using the conventional standard double sintering ceramic method. Two main absorption bands were observed, their positions were found to be strongly dependent on s-value. The high frequency band in the range 550-600 cm−1 and a low frequency band at around 400 cm−1 were assigned to tetrahedral Td and octahedral Oh sites, respectively, of spinel lattice. Force constant (FC) was calculated for Tdand Oh sites and was found to decrease with increasing Zn ions. Threshold frequency nth for the electronic transition was determined and found to increase with increasing Zn ions. Cations distribution for the prepared mixed ferrite was concluded based on the FT-IR spectra. The ionic radii for each site were correlated to the cations distribution of the given ferrite

    Synthetize and Magnetic Properties of Ni Substituted Polycrystalline Zn-spinel Ferrites

    Get PDF
    The mixed polycrystalline Ni1-sZnsFe2O4 ferrites where s is the percentage increments of Zn ions, were prepared using the standard double sintering by mixing pure metal oxides NiO, ZnO and Fe2O3. The netmagnetization (Mnet)was studied at room temperature as a function of applied magnetic field(H)over the range of (0-45) Oe ina constant magnetizing frequency (ν = 50 Hz). Mnet show increasing with increasing of H. Mnet is found to increase for the samples of s= 0.0, 0.2, 0.4 and 0.6 then decreases there after while the concentration of Zn increases in matrix i.e. samples of s = 0.8 and 1.0. The increasing of the magnetization with increasing of Zn+2 ions for the samples of s= 0.0, 0.2 and 0.4 explained by Neel’s two-sublattice model. However,for the decreasing of magnetization beyond > 0.6 explained by Yafet and Kittel for the three-sublattice model. The Yafet-Kittel angle (YK) for the samples of s = 0.4 to s = 1.0, shows increasing with increasing of the amount of nonmagnetic ions Zn+2 in ferrite. The relation between H and relative permeability (µr) show an interesting behavior of the present ferrite samples. µr for the samples of s = 0.0, 0.2, 0.8 and 1.0 is found to be smaller than the samples with s= 0.4 and s= 0.6. Substitution of the non-magnetic Zn+2 ions in Ni spinel ferrite has a tremendous influence such the magnetic properties. Furthermore, Zn content has significant influence on the magnetic properties for Ni ferrites, so, the mixed Ni-Zn spinel ferrite is considered a soft ferrite material, which is proved an interesting material for technological and scientific applications.The mixed polycrystalline Ni1-sZnsFe2O4 ferrites where s is the percentage increments of Zn ions, were prepared using the standard double sintering by mixing pure metal oxides NiO, ZnO and Fe2O3. The netmagnetization (Mnet)was studied at room temperature as a function of applied magnetic field(H)over the range of (0-45) Oe ina constant magnetizing frequency (ν = 50 Hz). Mnet show increasing with increasing of H. Mnet is found to increase for the samples of s= 0.0, 0.2, 0.4 and 0.6 then decreases there after while the concentration of Zn increases in matrix i.e. samples of s = 0.8 and 1.0. The increasing of the magnetization with increasing of Zn+2 ions for the samples of s= 0.0, 0.2 and 0.4 explained by Neel’s two-sublattice model. However,for the decreasing of magnetization beyond > 0.6 explained by Yafet and Kittel for the three-sublattice model. The Yafet-Kittel angle (YK) for the samples of s = 0.4 to s = 1.0, shows increasing with increasing of the amount of nonmagnetic ions Zn+2 in ferrite. The relation between H and relative permeability (µr) show an interesting behavior of the present ferrite samples. µr for the samples of s = 0.0, 0.2, 0.8 and 1.0 is found to be smaller than the samples with s= 0.4 and s= 0.6. Substitution of the non-magnetic Zn+2 ions in Ni spinel ferrite has a tremendous influence such the magnetic properties. Furthermore, Zn content has significant influence on the magnetic properties for Ni ferrites, so, the mixed Ni-Zn spinel ferrite is considered a soft ferrite material, which is proved an interesting material for technological and scientific applications

    Rectangular waveguide radiator miniaturization using electromagnetic infinity-shaped metamaterial resonator

    Get PDF
    A miniaturized open-ended rectangular waveguide antenna radiating below the cut-off frequency of the waveguide is proposed. Waveguide miniaturization is achieved by periodically loading the antenna with electromagnetic metamaterial (MTM) consisting of infinity shaped resonators. The metamaterial gives the waveguide the ability to support propagation of the backward wave below the cut-off frequency. The proposed open waveguide radiator was designed, optimized and simulated using High Frequency Structure Simulator HFSSTM commercial software. Comparing previous work of miniaturization of waveguides, a higher miniaturization ratio with a bandwidth about 327 MHz and good matching was obtained. Keywords:Waveguide miniaturization, left-handed media, metamaterials

    Analysis and Design of E-shape Meander Line Antenna for LTE Mobile Communications

    Get PDF
    the meander line antenna (MLA) is an electrically small antenna. Electrically small antennas pose several performance related issues such as narrow bandwidth, low gain and high cross polarization levels. In this paper, we analysis and design an E-shape MLA as anew shape to achieve wider bandwidth and smaller gain at 2.5 GHz compared to the classical MLA. Parametric study has been done for the effect of changing each variable in the antenna structure and study the effect of this change on the antenna performance. The best` performance of separate variables is combined at the end which give suboptimal design. Professional design software (HFSS) is used to design and optimize the antenna and MATLAB codes were written to determine the resonant frequency and the bandwidth for each study in this paper

    Pharaonic necrostratigraphy : a review of geological and archaeological studies in the Theban Necropolis, Luxor, West Bank, Egypt

    Get PDF
    Author Posting. © The Author(s), 2009. This is the author's version of the work. It is posted here by permission of John Wiley & Sons for personal use, not for redistribution. The definitive version was published in Terra Nova 21 (2009): 237-256, doi:10.1111/j.1365-3121.2009.00872.x.We present a review of archeological and geological studies on the West Bank as a basis for discussing the geological setting of the tombs and geologically related problems with a view to providing archeologists with a framework in which to conduct their investigations on the restoration, preservation and management of the antique monuments. Whereas the geology of the Upper Nile Valley appears to be deceptively simple, the lithologic succession is vertically variable, and we have recognized and defined several new lithologic units within the upper Esna Shale Formation. We have been able to delineate lithologic (shale/limestone) contacts in several tombs and observed that the main chambers in some were excavated below the Esna Shale in the Tarawan Chalk Formation. We have been able to document changing dip in the strata (warping) in several tombs, and to delineate two major orientations of fractures in the field. Investigations behind the Temple of Hatshepsut, in the Valley of the Kings and around Deir El Medina, have revealed four broad regional structures. We confirm that the hills located near the Nile Valley, such as Sheik Abel Qurna, do not belong to the tabular structure of the Theban Mountain, but are discrete displaced blocks of the Thebes Limestone and overlying El Miniya, as supported by Google Earth photographs
    corecore