The mixed polycrystalline ferrites Ni1-sZnsFe2O4, were obtained using the standard double sintering technique by mixing high purity of metal oxides NiO, ZnO and Fe2O3 for different concentration of Zn ion. DC electric properties and inductance of the prepared samples were carried out over the temperature range of 300 up to 773 K using two probe method and LCR meter. The thermal dependence of DC electrical conductivity (σDC) for the mixed Ni-Zn spinel ferrites with different Zn concentrations was investigated. In general, σDC found to be increased with both increasing temperature and Zn content. The thermal measurement of σDC confirmed the semiconductor behavior for Zn substituted Ni spinel ferrites and follows Arrhenius relation in the investigated temperature region. The variation of σDC indicated that the conduction mechanism was correlated to a small polaron-hopping. The activation energies of both regions, ferrimagnetic (Ef) and paramagnetic (Ep) and △E=Ep-Ef for all studied compositions were estimated. The calculated activation energy in the ferrimagnetic region was found to be less than that in paramagnetic region. The influenced of increased Zn ions on σDCand activation energies was investigated. From these results, it is found that △E and σDC decrease with increasing of Zn content. The inductance measurements for the prepared samples show constant values at low temperature range up to Curie temperature (TC), then the inductance decrease sharply except for ZnFe2O4 which confirmed that it is a paramagnetic at room temperature. The Curie temperature was determined from σDC and inductance measurement, which was found to be nearly the same and they decreased with increasing of Zn ions. The experimental results reveal that the electric properties and inductance, which can be dramatically changed by substitution of the non-magnetic Zn ions in Ni spinel ferrite. These improved properties of the mixed Ni-Zn spinel ferrite suggest uses as a soft ferrite material, which is proved an interest material for technological and scientific applications.The mixed polycrystalline ferrites Ni1-sZnsFe2O4, were obtained using the standard double sintering technique by mixing high purity of metal oxides NiO, ZnO and Fe2O3 for different concentration of Zn ion. DC electric properties and inductance of the prepared samples were carried out over the temperature range of 300 up to 773 K using two probe method and LCR meter. The thermal dependence of DC electrical conductivity (σDC) for the mixed Ni-Zn spinel ferrites with different Zn concentrations was investigated. In general, σDC found to be increased with both increasing temperature and Zn content. The thermal measurement of σDC confirmed the semiconductor behavior for Zn substituted Ni spinel ferrites and follows Arrhenius relation in the investigated temperature region. The variation of σDC indicated that the conduction mechanism was correlated to a small polaron-hopping. The activation energies of both regions, ferrimagnetic (Ef) and paramagnetic (Ep) and △E=Ep-Ef for all studied compositions were estimated. The calculated activation energy in the ferrimagnetic region was found to be less than that in paramagnetic region. The influenced of increased Zn ions on σDCand activation energies was investigated. From these results, it is found that △E and σDC decrease with increasing of Zn content. The inductance measurements for the prepared samples show constant values at low temperature range up to Curie temperature (TC), then the inductance decrease sharply except for ZnFe2O4 which confirmed that it is a paramagnetic at room temperature. The Curie temperature was determined from σDC and inductance measurement, which was found to be nearly the same and they decreased with increasing of Zn ions. The experimental results reveal that the electric properties and inductance, which can be dramatically changed by substitution of the non-magnetic Zn ions in Ni spinel ferrite. These improved properties of the mixed Ni-Zn spinel ferrite suggest uses as a soft ferrite material, which is proved an interest material for technological and scientific applications