756 research outputs found

    2MASS J05162881+2607387: A New Low-Mass Double-Lined Eclipsing Binary

    Full text link
    We show that the star known as 2MASS J05162881+2607387 (hereafter J0516) is a double-lined eclipsing binary with nearly identical low-mass components. The spectroscopic elements derived from 18 spectra obtained with the High Resolution Spectrograph on the Hobby-Eberly Telescope during the Fall of 2005 are K_1=88.45 +/- 0.48 km/s and K_2=90.43 +/- 0.60 km/s, resulting in a mass ratio of$q=K_1/K_2 = 0.978 +/- 0.018 and minimum masses of M_1 sin^{3}i=0.775 +/- 0.016 solar masses and M_2 sin^{3}i=0.759 +/- 0.012 solar masses, respectively. We have extensive differential photometry of J0516 obtained over several nights between 2004 January-March (epoch 1) and 2004 October-2005 January plus 2006 January (epoch 2) using the 1m telescope at the Mount Laguna Observatory. The source was roughly 0.1 mag brighter in all three bandpasses during epoch 1 when compared to epoch 2. Also, phased light curves from epoch 1 show considerable out-of-eclipse variability, presumably due to bright spots on one or both stars. In contrast, the phased light curves from epoch 2 show little out-of-eclipse variability. The light curves from epoch 2 and the radial velocity curves were analyzed using our ELC code with updated model atmospheres for low-mass stars. We find the following: M_1=0.787 +/- 0.012 solar masses, R_1=0.788 +/- 0.015 solar radii, M_2=0.770 +/- 0.009 solar masses, and R_2=0.817 +/- 0.010 solar radii. The stars in J0516 have radii that are significantly larger than model predictions for their masses, similar to what is seen in a handful of other well-studied low-mass double-lined eclipsing binaries. We compiled all recent mass and radius determinations from low-mass binaries and determine an empirical mass-radius relation of the form R = 0.0324 + 0.9343M + 0.0374M^2, where the quantities are in solar units.Comment: 16 pages, 10 figures (Figure 1 has degraded quality), to appear in Ap

    The Influence of Specimen Thickness on the High Temperature Corrosion Behavior of CMSX-4 during Thermal-Cycling Exposure

    Get PDF
    CMSX-4 is a single-crystalline Ni-base superalloy designed to be used at very high temperatures and high mechanical loadings. Its excellent corrosion resistance is due to external alumina-scale formation, which however can become less protective under thermal-cycling conditions. The metallic substrate in combination with its superficial oxide scale has to be considered as a composite suffering high stresses. Factors like different coefficients of thermal expansion between oxide and substrate during temperature changes or growing stresses affect the integrity of the oxide scale. This must also be strongly influenced by the thickness of the oxide scale and the substrate as well as the ability to relief such stresses, e.g., by creep deformation. In order to quantify these effects, thin-walled specimens of different thickness (t = 100500 lm) were prepared. Discontinuous measurements of their mass changes were carried out under thermal-cycling conditions at a hot dwell temperature of 1100 C up to 300 thermal cycles. Thin-walled specimens revealed a much lower oxide-spallation rate compared to thick-walled specimens, while thinwalled specimens might show a premature depletion of scale-forming elements. In order to determine which of these competetive factor is more detrimental in terms of a component’s lifetime, the degradation by internal precipitation was studied using scanning electron microscopy (SEM) in combination with energy-dispersive X-ray spectroscopy (EDS). Additionally, a recently developed statistical spallation model was applied to experimental data [D. Poquillon and D. Monceau, Oxidation of Metals, 59, 409–431 (2003)]. The model describes the overall mass change by oxide scale spallation during thermal cycling exposure and is a useful simulation tool for oxide scale spallation processes accounting for variations in the specimen geometry. The evolution of the net-mass change vs. the number of thermal cycles seems to be strongly dependent on the sample thickness

    The investigation of additive manufacturing and moldable materials to produce railway ballast grain analogs

    Get PDF
    The size and shape of individual grains, play an important role in the mechanical behavior of granular materials such as the strength and stability of railway ballast. The aim of this research is to study materials from which uniform, reproducible grains with irregular convex geometry can be created by molding and additive manufacturing technologies in order to create reproducible artificial assemblies that can be used in experiments. Packings with determined grain shape results more controlled investigations contrarily to using natural grains with random geometry. Specimens were made from railway ballast materials, materials used in the construction industry, additively manufactured and molded polymers, and certain low-strength materials. Uniaxial compression and bending tests were conducted on these specimens. The mechanical properties of typical railway ballast materials (basalt and andesite) were compared with the properties of artificially produced materials. The results show that for grain reproduction the molding technology is recommended with the use of polyester-crushed stone composite and ceramic powder. Furthermore, the additive manufacturing was recommended with PolyJet or Multi Jet Fusion technology as they have the feasibility to produce grains with similar material properties to the properties of basalt and andesite

    The Long-Period Orbit of the Dwarf Nova V630 Cassiopeiae

    Get PDF
    We present extensive spectroscopy and photometry of the dwarf nova V630 Cassiopeiae. A late-type (K4-5) absorption spectrum is easily detectable, from which we derive the orbital parameters. We find a spectroscopic period of P=2.56387 +/- (4 times 10^{-5}) days and a semiamplitude of K_2=132.9 +/- 4.0 km/s. The resulting mass function, which is a firm lower limit on the mass of the white dwarf, is then f(M)=0.624 +/- 0.056 solar masses. The secondary star is a ``stripped giant\u27\u27, and using relations between the core mass and the luminosity and the core mass and the radius we derive a lower limit of M_2 \u3e 0.165 solar masses for the secondary star. The rotational velocity of the secondary star is not resolved in our spectra and we place a limit of V_rot*sin(i) \u3c 40 km/s. The long-term light curve shows variations of up to 0.4 mag on short (1-5 days) time scales, and variations of 0.2-0.4 mag on longer (3-9 months) time scales. In spite of these variations, the ellipsoidal light curve of the secondary star is easily seen when the data are folded on the spectroscopic ephemeris. Ellipsoidal models fit to the mean light curve give an inclination in the range 66.96 \u3c i \u3c 78.08 degrees (90 per cent confidence). This inclination range, and the requirement that M_2 \u3e 0.165 solar masses and V_rot*sin(i) \u3c 40 km/s yields a white dwarf mass of M_1=0.977^{+0.168}_{-0.098} solar masses and a secondary star mass of M_2=0.172^{+0.029}_{-0.012} solar masses (90 per cent confidence limits). Our findings confirm the suggestion of Warner (1994), namely that V630 Cas is rare example of a dwarf nova with a long orbital period

    XMM-Newton observations of two black hole X-ray transients in quiescence

    Get PDF
    We report on XMM-Newton observations of GRO J1655-40 and GRS 1009-45, which are two black hole X-ray transients currently in their quiescent phase. GRO J1655-40 was detected with a 0.5 - 10 keV luminosity of 5.9 10^{31} erg/s. This luminosity is comparable to a previous Chandra measurement, but ten times lower than the 1996 ASCA value, most likely obtained when the source was not yet in a true quiescent state. Unfortunately, XMM-Newton failed to detect GRS 1009-45. A stringent upper limit of 8.9 10^{30} erg/s was derived by combining data from the EPIC-MOS and PN cameras. The X-ray spectrum of GRO J1655-40 is very hard as it can be fitted with a power law model of photon index ~ 1.3 +/- 0.4. Similarly hard spectra have been observed from other systems; these rule out coronal emission from the secondary or disk flares as the origin of the observed X-rays. On the other hand, our observations are consistent with the predictions of the disc instability model in the case that the accretion flow forms an advection dominated accretion flow (ADAF) at distances less than a fraction ~ 0.1 - 0.3) of the circularization radius. This distance corresponds to the greatest extent of the ADAF that is thought to be possible.Comment: 6 pages, 4 figures. Submitted to Astronomy and Astrophysic

    Accretion flow behaviour during the evolution of the Quasi Periodic Oscillation Frequency of XTE J1550-564 in 1998 outburst

    Full text link
    Low and intermediate frequency quasi-periodic oscillations (QPOs) are thought to be due to oscillations of Comptonizing regions or hot regions embedded in Keplerian discs. Observational evidence of evolutions of QPOs would therefore be very important as they throw lights on the dynamics of the hotter region. Our aim is to find systems in which there is a well-defined correlation among the frequencies of the QPOs over a range of time so as to understand the physical picture. In this paper, we concentrate on the archival data of XTE J1550-564 obtained during 1998 outburst, and study the systematic drifts during the rising phase from the 1998 September 7 to the 1998 September 19, when the QPO frequency increased monotonically from 81mHz to 13.1Hz. Immediately after that, QPO frequency started to decrease and on the 1998 September 26, the QPO frequency became 2.62Hz. After that, its value remained almost constant. This frequency drift can be modelled satisfactorily with a propagatory oscillating shock solution where the post-shock region behaves as the Comptonized region. Comparing with the nature of a more recent 2005 outburst of another black hole candidate GRO 1655-40, where QPOs disappeared at the end of the rising phase, we conjecture that this so-called `outburst' may not be a full-fledged outburst.Comment: 15 pages, 6 figure

    X-ray Nova XTE J1550-564: RXTE Spectral Observations

    Get PDF
    Excellent coverage of the 1998 outburst of the X-ray Nova XTE J1550-564 was provided by the Rossi X-ray Timing Explorer. XTE J1550-564 exhibited an intense (6.8 Crab) flare on 1998 September 19 (UT), making it the brightest new X-ray source observed with RXTE. We present a spectral analysis utilizing 60 Proportional Counter Array spectra from 2.5-20 keV spanning 71 days, and a nearly continuous All Sky Monitor light curve. The spectra were fit to a model including multicolor blackbody disk and power-law components. XTE J1550-564 is observed in the very high, high/soft, and intermediate canonical outburst states of Black Hole X-ray Novae.Comment: 14 pages including 1 table and 4 figures, Accepted to ApJ Letter

    X-Ray Emission from the Jets of XTE J1550-564

    Get PDF
    We report on X-ray observations of the the large-scale jets recently discovered in the radio and detected in X-rays from the black hole candidate X-ray transient and microquasar XTE J1550-564. On 11 March 2002, X-ray emission was detected 23 arcsec to the West of the black hole candidate and was extended along the jet axis with a full width at half maximum of 1.2 arcsec and a full width at 10% of maximum intensity of 5 arcsec. The morphology of the X-ray emission matched well to that of the radio emission at the same epoch. The jet moved by 0.52 +/- 0.13 arcsec between 11 March and 19 June 2002. The apparent speed during that interval was 5.2 +/- 1.3 mas/day. This is significantly less than the average apparent speed of 18.1 +/- 0.4 mas/day from 1998 to 2002, assuming that the jet was ejected in September 1998, and indicates that the jet has decelerated. The X-ray spectrum is adequately described by a powerlaw with a photon index near 1.8 subject to interstellar absorption. The unabsorbed X-ray flux was 3.4 x 10^-13 erg cm^-2 s^-1 in the 0.3-8 keV band in March 2002, and decreased to 2.9 x 10^-13 erg cm^-2 s^-1 in June. We also detect X-rays from the eastern jet in March 2002 and show that it has decelerated and dimmed since the previous detections in 2000.Comment: accepted for publication in ApJ, 11 pages, several figures in colo
    • 

    corecore