776 research outputs found

    Stopping powers and cross sections due to two-photon processes in relativistic nucleus-nucleus collision

    Get PDF
    The radiation dose received from high energy galactic cosmic rays (GCR) is a limiting factor in the design of long duration space flights and the building of lunar and martian habitats. It is of vital importance to have an accurate understanding of the interactions of GCR in order to assess the radiation environment that the astronauts will be exposed to. Although previous studies have concentrated on the strong interaction process in GCR, there are also very large effects due to electromagnetic (EM) interactions. In this report we describe our first efforts at understanding these EM production processes due to two-photon collisions. More specifically, we shall consider particle production processes in relativistic heavy ion collisions (RHICs) through two-photon exchange

    Future mobile satellite communication concepts at 20/30 GHz

    Get PDF
    The outline of a design of a system using ultra small earth stations (picoterminals) for data traffic at 20/30 GHz is discussed. The picoterminals would be battery powered, have an RF transmitter power of 0.5 W, use a 10 cm square patch antenna, and have a receiver G/T of about -8 dB/K. Spread spectrum modulation would be required (due to interference consideration) to allow a telex type data link (less than 200 bit/s data rate) from the picoterminal to the hub station of the network and about 40 kbit/s on the outbound patch. An Olympus type transponder at 20/30 GHz could maintain several thousand simultaneous picoterminal circuits. The possibility of demonstrating a picoterminal network with voice traffic using Olympus is discussed together with fully mobile systems based on this concept

    The Nystrom plus Correction Method for Solving Bound State Equations in Momentum Space

    Get PDF
    A new method is presented for solving the momentum-space Schrodinger equation with a linear potential. The Lande-subtracted momentum space integral equation can be transformed into a matrix equation by the Nystrom method. The method produces only approximate eigenvalues in the cases of singular potentials such as the linear potential. The eigenvalues generated by the Nystrom method can be improved by calculating the numerical errors and adding the appropriate corrections. The end results are more accurate eigenvalues than those generated by the basis function method. The method is also shown to work for a relativistic equation such as the Thompson equation.Comment: Revtex, 21 pages, 4 tables, to be published in Physical Review

    Hyperbolic calorons, monopoles, and instantons

    Full text link
    We construct families of SO(3)-symmetric charge 1 instantons and calorons on the space H^3 x R. We show how the calorons include instantons and hyperbolic monopoles as limiting cases. We show how Euclidean calorons are the flat space limit of this family.Comment: 11 pages, no figures 1 reference added Published version available at: http://www.springerlink.com/content/k0j4815u54303450

    Stopping powers and cross sections due to two-photon processes in relativistic nucleus-nucleus collisions

    Get PDF
    The effects of electromagnetic-production processes due to two-photon exchange in nucleus-nucleus collisions are discussed. Feynman diagrams for two-photon exchange are evaluated using quantum electrodynamics. The total cross section and stopping power for projectile and target nuclei of identical charge are found to be significant for heavy nuclei above a few GeV per nucleon-incident energy

    Fully energy-dependent HZETRN (a galactic cosmic-ray transport code)

    Get PDF
    For extended manned space missions, the radiation shielding design requires efficient and accurate cosmic-ray transport codes that can handle the physics processes in detail. The Langley Research Center galactic cosmic-ray transport code (HZETRN) is currently under development for such design use. The cross sections for the production of secondary nucleons in the existing HZETRN code are energy dependent only for nucleon collisions. The approximation of energy-independent, heavy-ion fragmentation cross section is now removed by implementing a mathematically simplified energy-dependent stepping formalism for heavy ions. The cross section at each computational grid is obtained by linear interpolation from a few tabulated data to minimize computing time. Test runs were made for galactic cosmic-ray transport through a liquid hydrogen shield and a water shield at solar minimum. The results show no appreciable change in total fluxes or computing time compared with energy-independent calculations. Differences in high LET (linear energy transfer) spectra are noted, however, because of the large variation in cross sections at the low-energy region. The high LET components are significantly higher in the new code and have important implications on biological risk estimates for heavy-ion exposure

    A Quantum-Mechanical Equivalent-Photon Spectrum for Heavy-Ion Physics

    Get PDF
    In a previous paper, we calculated the fully quantum-mechanical cross section for electromagnetic excitation during peripheral heavy-ion collisions. Here, we examine the sensitivity of that cross section to the detailed structure of the projectile and target nuclei. At the transition energies relevant to nuclear physics, we find the cross section to be weakly dependent on the projectile charge radius, and to be sensitive to only the leading momentum-transfer dependence of the target transition form factors. We exploit these facts to derive a quantum-mechanical ``equivalent-photon spectrum'' valid in the long-wavelength limit. This improved spectrum includes the effects of projectile size, the finite longitudinal momentum transfer required by kinematics, and the response of the target nucleus to the off-shell photon.Comment: 19 pages, 5 figure

    Relativistic Multiple Scattering Theory and the Relativistic Impulse Approximation

    Get PDF
    It is shown that a relativistic multiple scattering theory for hadron-nucleus scattering can be consistently formulated in four-dimensions in the context of meson exchange. We give a multiple scattering series for the optical potential and discuss the differences between the relativistic and non-relativistic versions. We develop the relativistic multiple scattering series by separating out the one boson exchange term from the rest of the Feynman series. However this particular separation is not absolutely necessary and we discuss how to include other terms. We then show how to make a three-dimensional reduction for hadron-nucleus scattering calculations and we find that the relative energy prescription used in the elastic scattering equation should be consistent with the one used in the free two-body t-matrix involved in the optical potential. We also discuss what assumptions are involved in making a Dirac Relativistic Impulse Approximation (RIA).Comment: 20 pages, 9 figures, Accepted for publication in Journal of Physics
    corecore