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I. Introduction

The radiation dose received from high energy galacticcosmic rays (GCR) isa limiting

factorin the design of long duration space flightsand the building of lunar and martians

habitats. It isof vitalimportance to have an accurate understanding of the interactionsof

GCR in order to assessthe radiationenvironment that astronauts willbe exposed to.

Most previous studieshave concentrated on strong interactionprocess in GCR. However

there are alsovery largeeffectsdue to electromagnetic (EM) interactions.EM studies have

previouslyconcentrated on singlephoton exchange leadingto nucleon removal. However two-

photon processes alsooccur which lead to the production of lepton pairswith crosssections

of the order of kilobarns.Also at high energy the stopping powers from these processes can

exceed that due to atomic collisions.Thus even though very high energy GCR are not as

abundant as lower energy GCR they stillmust be considered due to the factthat the crom

sectionsand stopping powers are so much largerthan normal.

In thisreportwe describeour firsteffortsat understanding these EM production processes

due to two-photo collisions.More specifically,we shallconsiderparticleproduction processes

in relativisticheavy ion collisions(RHICs) through two-photon exchange. Examples of this

broad category of processesinclude:

ziz2 --.ZaZ21+l-

ZIZ 2 _ ZIZ28+8 -

ZlZ 2 ---+ZlZ2V'+V -

ZI Z 2 ---*ZI Z2I_ 0

(1.1a)

(1.1b)

(1.1c)

(1.1d)

in which l+l- denote charged leptons,s+ s- denote charged scalars,V+V - denote charged

vector particles,and H 0 isa neutral Higgs scalar.

We shall limitour consideration to cases in which the collidingnuclei are identical,so

that Z1 = Z2 = Z. An important Feynman diagram that contributes to (1.1a),(1.1b),and

(1.1c)isshown in the followingfigure(fig.1).
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For process (1.1d), an important diagram is shown in figure 2, in which the triangular

loop receives contributions from quarks, leptons and W gauge bosons. These processes are

important for the following reasons (ref. 1).

(1) These kind of processes become increasingly important as energy of the colliding nuclei

increases, since their cross sections increase with energy. Thus their contributions to the

stopping power of high energy ions also become more important at high energies.

(2) These processes can be channels for production of charged particles, e.g., l+l -, W+W -,

and neutral particles such as Higgs boeons, and various mesons.

(3) For high Z nuclei these processes can be used for studying non-perturbative effects in the

electromagnetic interaction.

(4) They must be taken into account in the study of strong interaction effects in heavy ion

collisions since they can lead to important background events, and must be taken into

account also in the design of experimental set up, since they can lead to significant beam

loss.

Section 2 of this report gives a brief survey of a few major approaches used in the

calculations for these processes. Section 3 examines some results of our calculations. We

then point out briefly some open questions and make a few concluding remarks in Section 4.

The purpose of this report is threefold. (1) It gives a simple, elementary introduction to

this field. (2) It provides sample calculations for illustrating the approach we use. (3) The

background and techniques developed here can be used as a general base for hunching further

and more specialized studies into this field.

While it is not our main goal here to obtain new and original results, some of our results

are possibly new, and are as yet not available in the literature.

2. A Brief Survey of Different Approaches

In this section, we briefly list a few major approaches used in calculating cross sections

for the kind of processes we are interested in. The first approach has been discussed in
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references2 and 3. In this approach,each colliding nucleus is replaced by an equivalent

spectrum of photons. Eachnucleusis considered to move in a straight line, unperturbed by

the interaction. At a distance b from the line of motion of a nucleus, a spectrum of photons

is generated, whose frequency distribution has the form:

NC ,b) =

where

wb
x---- (2.1b)

'Tv

K0, K 1 are modified Bessel functions, see reference 4, Sections 3.7 and 15.4.

The cross section for this process can be written as an integral of a photon distribution

function multiplied by a photon-photon croas section.

where

dwl / dW2F(wl,W2)a.Ty(Wl,W2) , (2.2a)0"= WJ _2

/:L/o ?"F(a;1, _2) = 21r bldbl b2db2

× Y(w2, b2)e(b' - R1 -- R2)

drhN(wl, bl)

(2.2b)

and

hi=

where Wl and w2 are the frequcncies of the photons emitted by the nuclei, bl and b2 are the

distances of the nuclei from the point where the photons collide. Details can be found in

Appendix A. Various differential cross sections can be derived from these equations. First

consider _ where W is the mass of the produced charged particle pair. We note thatwe

W 2 - 4_lW 2. Hence we can equate in (2.2a)

a=Ja dw (2.2a)
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and

da 1 dWl F Wl ,

Next we define the probability for producing a particle pair P(b) at impact parameter b by

where

1 da

P(b) =- 2rb db (2.4a)

do" / dwl [ dW2F(wl,w2)a,ry(Wl,W2)6(b-b'), (2.4b)J

in which it is understood that the 6 function is to be taken inside the triple integral which

defines F(wl,W2). The correctness of (2.4) can be checked by integrating both sides of (2.4b)

over all values of the impact parameter b, which then yields (2.3a) for the total cross section.

P(b) is the probability for the events in which two nuclei collide with each other at impact

parameter b, producing a charged particle pair in the process. A quantity L, known as the

two-photon luminosity function is defined by (see ref. 2, eqs. (1), (9), and (10))

So

_2 = _ F Wl, ,

do" dL 2

= ),

and

(2.5b)

(2.s¢)

where we have used the factthat a.rT(Wl,w2) actually depends only on W 2 so that we can

write

= (2.6)

It is our view that equation (10) of reference 2 is in error, and have duly corrected the error

in the above definition of the luminosity function L. For stopping power calculation, we use

the formula

4

dx = p -_1 -_-2 (wl + w2)F(wl'W2)a"r'r(Wl'W2)' (2.7)



where p isthe number of nucleiper unit volume.

The second type of approach has been applied to a related set of purely quantum

electrodynsmic (QED) processes: e+e - _ e+e-l+l -. This process can be calculated

within the framework of QED. Cross sectionscan be obtained numerically by Monte-Carlo

integration. Approximate formulas for total cross sections have also been obtained. See

references 5 and 6. This kind of approach can be modified to apply to RHIC processes,

provided one takes into account properly the effectsof nuclear currents. See reference 7,

Section II.

In an approach closelyrelatedto thissecond type of approaches, Bottcher treated the

collidingnucleiclassically,by regarding them as classicalcharge distributions.The remaining

amplitude for the production of charged particlepair isthen obtained in the framework of

QED. Thus for the case of the reaction ZIZ2 --_ZlZ2l+l - the total cross section can be

written in the form (ref.8, eq. (I0),p. 38):

2 2

_= _(41ra)4 / d3p-d3p+d2kl-L¢2

l [ '× _ _(P-'_-I fi _-- #1-,_t

+/5___/_2-mlfiv(p+,s+), (2.s)

where v denotes the velocityof one of the nucleiin the center of momentum frame, p- and

iv+ are the momenta of the produced leptons,s- and s+ are theirpolarizations,_-,a-}

and v(p+, s+) are the lepton spinors,kl and k2 are the momenta of the exchanged photons,

and fl and f2 are the nuclear form factors. For any 4-vector A, the slash notation _[ is

defined by
3

= _ A._., (2.9)

where 7 _ are the Dirac 7-matrices, see for instance reference 9, Appendix 2, pages 355-361.
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3. Results

In this report, we adopt the approach discussed in references 2 and 3. As samples of our

calculations, we present a number of results for the process 2°8pb2°Spb _ 2°8pb2°Spb l+l -,

and some others. Most of our calculations are done for colliding beam energies of 3400 Gev

and 8000 Gev per nucleon. The impact parameter b varies over the range from 10 fin to

1000 f_n. The mass of l+l - varies from a threshold equal to 2m/up to about 1000 Gev. In

Appendix B we list the photon-photon cross sections for the following processes:

"7"7_ 1+1 - (3.1a)

77 --'* s + s- (3.1b)

7'7 "* V+V- (3.1c)

_--* H 0 (3.1d)

The derivations of some of these cro6s sections are also given there. By using (2.2)-

(2.6), we can then obtain various luminosity functions, differential and total cross sections,

probabilities, and stopping powers.

Table 1 shows the total cross section for 208pb208pb _ 2°8pb2°8pb e÷e -. We compare

our numerical results based on (2.1) and (2.2), with the results based on the approximate

formula (ref. 5, eq. iF.l), p. 276)

28 (Z1Z2a2)2(l 3 _ Al 2 + Bl + C) (3.2)
a = 271rm2

\ mlrn2 ]

Zi, Pi, and m/, i - 1, 2 are the changes, momenta, and masses of the colliding nuclei.

where

A_,6.36, B_15.7, C_-13.8,



Table 1

Incident energy/nucleon

E (Gev)

3400.0

8000.0

Total crom section (fznz)

Our results Calculated from formula

0.2445 x 10_

0.8382 x 108 0.3333 x 108

Table 2 shows the corresponding stopping power calculations. The energies of the incident

particles are given for both the case of colliding beams and also the case of an incident beam

colliding with a fixed target.

Table 2

Incident energy/nucleon

E (Gev, colliding beams)
0.9636

0.1367 x 101

0.2704 x 101

3400.0

8000.0

Incident energy/nucleon

E (Gev, fixed target)
1.039

3.039

14.64

0.2462 x 108

0.1363 x 109

lx( dE'_

(Gev fm 2)

0.2496 x 101

0.1918 x 10-1

0.1725 x 10-1

0.8855 x 101

0.3131 x 102

For Pb-208, rho =

In figure 3, we give plots of t_2 dL• , _ _ a function of W in different ranges of W. The

differential cross section _ can be obtained from _ by multiplying _ by a 77 cross

sectionas in (2.5c).

Figures 4a--d show plots of a.rv(W 2) for the reactions 77 -_ l+l-, 77 -_ s+s-,

"7"l "" V+V -, and 7"/_ HO.

Figure 5 shows plots of P(b) for the reaction 2°Spb2°SPb --. 2°sPb2°Spb e+e - at different

energies.

Figure 6 presents plots of the total cross section for the process 2°8pb2°Spb ---*

205 pb208p b H o.
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We have compared some of our results with the published results of Papageorgiu and Baur,

and found some good agreement. In the following, we give a sample of such comparisons.

Table 3

v

Incident

energy/

nucleon

(colliding

beams)

E - 3400.0

Gev

E = 8000.0

Gev

2dL

W (Gev) W/v_ Our result

100.0 0.7070 x 10 .4 0.3152 x 103 0.33 x 103

141.4 0.1000 x 10 .4 0.8630 x 102 0.90 x 102

212.2 0.1500 x 10 .3 0.1206 x 102 0.13 x 102

282.9 0.1990 x 1010.2000 x 10 .3

0.5709 x 10 .4 0.6129 x 10319.0

Papageorgiu's

result

0.21 x 101

0.70 x 103

280.0 0.8413 x 10 .4 0.1708 x 103 0.20 x 103

370.0 0.1112 x 10 .3 0.5444 x 102 0.60 x 102

460.0 0.1382 x 10 -3 0.1881 x 102 0.20 x 102

550.0 0.1653 x 10 -3 0.6866 x 101 0.70 x 101

640.0 0.1923 x 10 -3 0.2606 x 101 0.28 x 101
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Table 4

Incident energy/nucleon (coUiding beams) E = 3755.6 Gev

do' (fm 2 C___v-2)

OurresultW(Gev)

0.1200 × 10 -2 0.6188 × 1013 0.62 × 1013

0.1414 x i0 -2 0.4923 x 1013 0.48 × 1013

0.1732 x 10 -2 0.2777 x 1013 0.28 x 1013

0.2000 x 10 -2 0.1714 x 1013 0.17 × 1013

0.2200 x l0 -2 0.1222 x l013 0.12 x l013

0.2400 x 10 -2 0.8894 x 1012 0.92 × 1012

0.2600 x 10 -2 0.6607 x 1012 0.69 x 1012

0.3000 x 10 -2 0.3846 x 1012 0.40 x 1012

Baur's result

Papageorgiu and Baur's results were taken from appropriate graphs in their papers (ref.

2, fig. 3; and ref. 3, fig. 9).

2 2
Cross sections are expected to scale roughly as Z 1 Z 2. For our case Z 1 - Z 2 -- Z. So in

order to obtain the corresponding cross sections, luminosity function, or stopping power for

zlz 
different nuclei, one can simply multiply the results we have here by a factor (z=82) 4 . Thus

if one want_s the results for A! Fe collision, one can multiply the results presented in this

132562 The different nuclear sizes are expected to affectsection by the conversion factor _.

the results also. However for a rough order of magnitude estimate, such a simple scaling is

expected to be reasonably accurate.

4. Open Questions and Conclusions

For small values of b, and rnl, such as rn I = me, P(b) exceeds 1. This signifies the

breakdown of perturbation theory. The question as to how to extract meaningful results

9



from theory is under active investigation. See reference I0. In our simple approach,

we have regarded the nuclei as point charges. By using form factors for the nuclei,the

problem of violation of unitarity is expected to be somewhat ameliorated. However this

problem stillneeds to be addressed, because for high Z nuclei,the coupling constant for

the electromagnetic interactionisof the order Ze, even with nuclear form factortaken into

account, which may thereforestillleadto a breakdown of the perturbative approach to cro_-

sectioncalculation.In a collaborationwith Mirek Fatyka of Brookhaven National Laboratory

(BNL), we shallinvestigateproduction and neutral meson production (such as _0, _/0)in

high energy heavy ion collisions.In these processes,we shalllook for possible deviation in

the measured ratesor crosssectionsfor values calculatedby perturbation theory.

In many studies of the type of processes considered here, various approximations are

used. We have mentioned the equivalent photon approximation, and the semi-classical

approximation. Also, in the approach of references 2 and 3, which we have adopted in

this report,the effectdue to phase coherence of the electromagnetic fieldgenerated by the

nucleihas not been properly taken into account. One needs to investigatehow valid these

approximations are and what the regions of validity are for them.

When one is primarily interested in the kind of electromagnetic processes discnsed

here, one needs to be able to estimate reliablythe background due to strong interaction.

Furthermore, there are other electromagnetic processes that also need to be studied, in

addition to the ones we have looked at,even though the ones we have considered are among

the most important.

In summary, we have given a brief introduction to two-photon exchange processes in

high energy heavy ion collisions.Our calculationsare based on an approach discussed in

references2 and 3. In view of the significanceof thisclassof processes,and the many open

questions that remain to be answered, we believethat further study in these areas willbe

valuable,not only for gaining a better understanding into these processes themselves, but

also forstudies and experiments in strong interactionphysics.
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In the following Appendices, we discuss the derivation of some of the formulas we have

used. We look at the equivalent photon approximation in Appendix A and show how this is

applied to the two-photon exchange processes in KHICs. Then in Appendix B, derivatives are

given for some _ cross sections. Appendix C provides a derivation of fermion contribution

to the process H 0 -* _. In Appendix D, we look at the details of how certain integrals

encountered in our calculations are evaluated. Finally Appendix E gives a simple derivation

of the formula (2.7) used for calculating stopping power.
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Appendix A. Equivalent Photon Approximation

Consider a charge of moving along the x-axis. The effect of this charge on another charge

located a distance b from the z-axis can be approximately calculated as follows.

By first considering the electromagnetic (EM) field due to q in its own rest frame, and

then making a Lorentz transformation to the laboratory frame, it is straight forward to show

that the electromagnetic field due to q is given by

E1 __ _qv,T_(b 2 + ,_2v2g2)-3/2

E 2 - qb_(b 2 + -y2v2t2)-3/2

v v b_(b 2 "t" "_2v2t2)-3/2
B3 = cE2 - q c

E3 - B1 - B2 - 0

t = 0 corresponds to the instant when q passes through the origin.

(A.la)

(A.lb)

(A.Ic)

(A.ld)

When v _. c, the

components E2 and B3 can be thought of as the components of a pulse of plane-polarized

EM wave travelling along z. The energy flux of this EM field is given by the Boynting vector

C

_=_g:x_.

So ignoring E1 for the moment, _ points along z, and its magnitude is

(A.2)

c E$, (A.Z)

in which we have made the approximation _ _ 1. Over a unit area, the flow of energy is

; °FISIde= _ E22(t)de,
oo oo

Using Parseval's theorem, we therefore have

/; /2ISlde--- IE2(_)I 2 dw,
oo 41r oo

where _ is the Fourier transform (FT) of E2, defined by

/(t) e-i'_ dt

12
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Hencethe quantity S2(w), defined by

C

_2(_)= _ I_(_)I2, CA.6)

can be thought of as the energy per unit frequency per unit area ofthe EM fieldat frequency

w generated by the moving charge q. To obtain the photon number per unit frequency per

unit area at frequency w, we set n2(w) - _S2(w), since each photon has energy F_w. For

the function N2 (w),the dependence on the distance b isimplicit.To make the dependence

on b explicit,we can write instead

From (A.Ib), we obtain

I A

-2(_, b)= _S2(_).

$2(_)= _ v ,_-y,_

_2(_)= _._2

Hence

(A.7)

(A.8)

(A.9)

The remaining component El, of the EM fieldcan be complemented by a magnetic fieldso

that they can be considered to form a pulse of plane polarizedEM wave. The same treatment

can be applied to these components, so that the energy spectrum can be similarlyobtained

as before. The resultis

---41r'_2v2 \b/ 7r\Tv I (A.10)

The effectof thispulse isroughly _ that of the firstpulse.So at high velocity,the second

pulse can be neglected when compared with the firstpulse.

In conventional treatment, the two pulses are then simply added together, so that the

effectdue to the originalmoving charge q isreplaced by a spectrum of photons whose number

density issimply the sum of the number densitiesfrom the two pulsesdiscussed above. Thus

13



one set

] 1 c1( )n(w,b)--_ (u_) + Sl(W) - hw47r v 2

After identifying q = Ze, _ = a, and noting

_
_r \Tv}

(A.11)

siC-w) = Si(w) for i= 1,2, (A.12)

the photon energy spectrum

N(w,b) = Sl(W) + ._2(w) + -_l(-W) + S2(-w)

Z2a

Application of Equivalent Photon Approximation to Two-Photon

Exchange Processes

When two nuclei Z1 and Z2 collide with each other, their EM interactions can be studied

in terms of the EM interaction of the spectra of photons emitted by the nuclei. The situation

can be pictured as in figure A.2.

The two photons 32 and _2 are considered as colliding head-on with each other. Taking

a cross-sectional view perpendicular to the direction of motion of the nuclei, the situation

can be pictured as shown in figure A.3.

From our previous discussion, the number of photons emitted by Z1 at P, whose

frequencies are between Wl and w 1 + t/Wl, is n(aJ1, bl)dWl bl dbl d_bl, where n(w 1 • hi)

is defined by (A.11). Similarly, the number of photons incident at P emitted by Z2 is

n(w2, b2)dw2 b2 db2 d¢2. Therefore the EM cross section for the collision of Z 1 and Z2

through two-photon exchange can be written as

a = / n(a_l,bl) n(w2,b2) a.rT(Wl,w2)bl dbl d¢l b2 db2 d¢2
(A.14)

x e(b- RI - R2)d_1_2

14



in which RI and R2 stand for the nuclear radii of Z1 and Z2, and the 0-function takes into

account that when b < R1 + R2, the two nuclei overlap, and the EM interaction is swamped

by the strong interaction of the nuclei, and so one needs to restrict b to values > R1 + R2 if

one wants to look only at EM interaction.

Since b = (b 2 +bl 2 - 2bib2 co6 ¢) 1/2, the integration f d¢l d¢2 in (A.14) can be simplified

if one integrates over ¢1 and converts the integration over ¢2 into an integration over _b:

So (A.14) can be rewritten as

f

ar = 2_r Jn(wl,bl) n(w2, b2) _r,.r-r(Wl,W'2)O(b- R1 - R2) (A.16)

x bl bdl b2 db2 de dwl dw2.

If one now substitutes for n(wi, bi), i = 1, 2, using (A.11), one obtains (2.2).

Concerning the cutoff for bl and />2, we observe the following. (A.14) involves an

approximation, which consists of replacing the virtual photons emitted by Z1 and Z2 with

real photons 71 and 32. This approximation is valid only if the masses of the virtual photons

A1 and A2 are small compared to the mass of the produced system W. (See ref. 4, Sections 6.1

and 6.7). By the uncertainty relations, Ai = _, i = 1, 2. Hence in order for the approximation

in (A.13) to be valid, we must have A/< W, or _ <W. Therefore,

1

b_ >_ (A.17)

If bi does not satisfy(A.17), contribution to the cross section is small, and is generally

considered negligible.See reference 5, Sections 6.1 and 6.2,and reference 11, Sections 7,

7.1-7.3. Another consideration for the values of bi is that since we are interestedin the

effectsof each nucleus acting as a singleentityratherthan as a collectionof nucleons acting

independently of each other,i.e.,we are interestedin the coherent effectsof the collectionof

nucleons,we need to restrict

bi > R4. (A.18)
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So for reactions in which the Compton wavelength of the produced system is smaller than

the nuclear radii,i.e.,_ </_, we can set the minimum of bi by

bima =/_. (A.19)

This is the case for _+_- and r+r - pair function.

1
Compton wavelength of an electron _ is>/_. So we set the minimum of bi by

1

bim =

But for e+e - pair production, the

(A.20)

18



Appendix B

First we list the cross sections for the processes in (3.1): 77 --* /+/-,77 "* s+s-,77 "*

V+V -, and 7'7 _ H°. (See ref. 2, eqs. (14)-(17), pp. 159, 160; and ref. 12, eqs. (10), (11),

-(l+yl) IV_-_/],

p. 95.)

(B.la)

2_ra2 [_(77--8% I) =_ (1

81r(x2 [ 11a('yV --+V+V I) =--_ _ 1

where

y! -

+ _tv + 3t A- 3t_(1 - 2_)]n -- , (B.lc)

4m2 4ms2 (B.2a)
W2, Ys = W---_-,

m2 A = v/l - 4iv. (B.2b)
=

W is the total energy of the two photons in the center of momentum frame.

a(7"?-_ H 0) = 81r2F 6(W 2- m 2)
mH

where r can be written as (ref.12, eq. (I0),p. 95)

r= 8 .3v 

and I in turn has the form (ref. 12, eqn. (11), p. 95)

(B.3)

(B.4)

q l

(B.5a)
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[q -- 3 [2_q + )_q(4_/-- 1)f()_q)] , (B.5b)

//= 2A l + )q(4A/- 1)f(,k/),

where for

and for

1

t w = 3XW(X - 2_,w)f(_,w) - 3_, w - _,

1 ( ___)2)_>_, f(%)=-2 arcsin

1 1( ___)2 lr 2 r/+< ,y(_)= _ In --_-+ir In--:_,r/

(B.Sd)

(B.6a)

(B.6b)

The subscripts q,

=_-l- -)_

l, and W stand for quark, lepton and W-boson, respectively.

(B.6c)

2

mi l, W,Xi----------_- , for i=q,
m h

and m/are the rest masses of the eoresponding particles, m h is the rest mass of H 0.

In the following, we give the derivatives of the cross sections for the processes

(B.7)

77 --*S+S-, (B.8)

"77 "* l + l-.

We also give a derivation of the relationship between a and F for the process

(B.9)

-rT--, H ° (B.IO)

7"Y -_ 8+s-.
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The lagrang_an for the system, including EM interaction, can be written as

£cm - - l O_ + ieA_) qb+ l_-_, ieA_) qb - m2qb+dp (B.11)

in which _b denotes a scalar field operator, A_, denotes the photon field, p = 0, 1, 2, 3. We

use the convention that repeated indices are summed over, so that for example,

A_A _ = AoA ° + A1 A1 + A2 A2 + A3 A3

= AoAo - A1A1 - A2A2 - A3A3.

(B.12a)

(B.12b)

This lagrangian can be separated into a free part, and an interaction part, so that

A_ m
_nt = ie dp+ Odp

az_

+ e2 A#A#qb+dp.

O_+ A_,_)c3x_ (B.13)

The S-matrix element that contributes to (B.8) can be written in the form

< p-;p + [S (1) + S(2)[ kl, el; k2, e2 > (B.14)

in which p+ denotes the momenta of S +, kl, q are the momenta and polarization vectors of

the photons, i = 1, 2, and S(2) is defined by

S(2) -- i 2 /T _._nt(Z1)A:int (x2) d4Xl d4x2, (B.15)

where T denotes the time-ordering operator. Contribution from S (2) can be represented by

the diagrams.

Using (B.13) and (B.15), and standard techniques of field theory, one obtains

< p-; p+[S(2)[kl,e1;k2,¢2 >

"- ie2(21r)4(2p-o • 2p+o" 2k10" 2k20) -½ n -2

× + p+ - - k2), (B.16)
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where h - p_ - hi - k2 -p+, k' -- p_ - h2 = kl = p+, _ is the normalization volume, and

e denotes an infinitessimal quantity.

Likewise S (1) is defined by

S (1) = i T /£int(X) d4k, (B.17)

and

< P-;P+IS(1)[kl, el; k2, e2 > = ie2(27r)4(2p-o • 2p+o" 2k10- 2k20) -1/2

x _-2 2e 1 . e2 64(p_ +p+ _ kl _ k2). (B.18)

The diagram representing this matrix element is shown in figure B.2.

The total cross section is obtained by squaring (B.14), averaging over photon polarizations

el and e2, integrating over phase space, and finally dividing by the photon flux. Hence we

have

(_l,f2

f_ 1

x_2x _ x _,

kl,el; k2,e2 > 2 d3p_ d3p+(2,r)6

(B.19)

in wl:dch To is the normalization time. Substituting (B.16) and (B.18) into (B.19), we obtain

_To d3p - d3p+ f_3a = e4a 2 /(8) 64 (p_ + p+ - k 1 - k+) (21r)4 (21r) 6 2cTo

_ e 4 a2_ 4 [_

(27r) 4- 2e (21r) 6 (/)2-o -- rn2)l/2 P-...__oo-- • 2 ]0 f(e) sinOd_x21r.
(B.20)

where

20

1 [el" (k + P-)e2" (P +- k)
el ,e2

+ e2. (k' + p-)ex- (p+- k') ]k _ - m 2 + ie + 2el • e2

a = (21r) 4 (2p-o. 2p+o. 2k10-2k20) _1/2 f_-2,

2

(B.21)

(B.22)



and 8 is the angle between p _ and the z-axis. We shall work in the center of momentum

frame of the two photons, and use the fact that for real photons,

_1" kl =(2"k2=0. (B.23)

After some algebraicmanipulation, we obtain

1 2f(O) - #4sin40 (1 - # cos 0)2 + (I - # cos 0)(1 + # cos 0)

[ i lj+2-2#2sin28 1-#cos8 + 1+#cos0 '

in which

P--O

1 }+ (1 +8 cos 8) 2

(B.24)

(B.20) can be simplifiedby carrying out the integrationover O, so that

and hence

_0= _. 11 + El.f(O)sin 0 d8 = 4(2 - 82) + 2(# 2 + 1)(#2 - 1) InIl_--_[,
(B.25)

e4a2_4 P2-°# x 2_r
- (2_r)I°.2c 2

1 ,1+#11× 4(2- 82) + 2(82 + 1)(#2 - I)_ •

Using the definition of a in (B.22), we then obtain

°'--e 4 (2z.)8n_ 4 1 fl 4 p2 o [4(2 #2)#16p4_.o (21r) I0 x 2c x T x 2_r x -

,1+#I
+ 2(# 2 + I)(# 2- 1) Inl;-_--L_ J

(B.26)

(B.27a)

e 4 I I I
(21r)2 16p2_o _ x 2_" x L4(2 - 82)# + 2(8 2 + 1)(8 2 - 1)

I1+#11
× 1_--z--jU. (B.27b)
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In the '_naturalunits" in which one setsh -- e -- 1, this result can be written in the form

=(47r)24p2oX2_r (2-_2)_+(_2+l)(_2-1)x_In_ .

4m2 _" ----2p-o, we can writeIn terms of the variables Y -- -_r, ,, ----P-o + P+o

(B.29)

e 2
in which a - _1_ is the fine structure constant. This result is the same as the one obtained by

Papageorgiu (ref. 2, eel. (15), p. 159). 77 "-'* l+l-. For this case the interaction lagrangian

can be written in the form

_nt = --e _(:r) _[(x)_Cx), (B.S0)

in which ¢(x) denotes the lepton field operator. _[(x) = A_(x)7 _' and 7 _,/z = 0, 1, 2, 3, are

the Dirac 7-matrices. (See ref. 9, Appendix 2, p. 335-361.) ¢(x) = _t(x)%, where _bt(z)

is the hermitian conjugate of ¢(x). The second order team in the S-matrix is defined by

(B.15), with Eint(x) defined by (B.30). The initial and final states can be denoted as

i > -- Ikl,cl;k2, c2 >, (B.31a)

I > = Ip_,S_;p+,S+ >, (B.31b)

in which we have already defined kj,ej,j = 1,2 as the photon momenta and polarization.

p+,p+ are the momenta and spins of 1+ and 1- respectively. Following the notations of

reference 9, appendix 2, we can write the S-matrix element </IS (2) li > as

- + i_ g_v(p+, s+)

. i(_ n + m) ]+ _(p_,s_) nk_ ---,n-_¥_ h v(p+,S+) #0,- + p+ - k_ - _),

where

22
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a __ (21r) 4 (2p-o. 2p+o" 2k10" 2k20) -1/2_-2,

u(p-, S-) and V(p+, 3"+) are the spinor wave-functions associated with l- and l +. This

S-matrix element can also be represented diagrammatically by Figures. (B.la) and (B.lb).

The total cr_s section is given by a formula similar to (B.19):

1 < [i 12d3p-d3p+ 1
¢Y -- / "4 _-_1 f l _2 > (_ )6 _2-_C _OO .

(1 ,((2),
s__s+

(B.33)

Performing the sum over the photon and lepton spins, we can write

z I '>I'= +
(1,(2, (1 _2

S_ ,S+

k I --k2)_{(k 2 --rn 2 h-ie)-2

x Trk_- + m) Ix i(# + m) ¢z(_+ - m) ¢2(-i)(# + m) caJ

_1_ (k2 rr_2 +i_.)-l(k12_m 2 + i_)-1Tr[Cf_ + m) ¢1(k+m) ¢2(f+- rn) caCg'+m) ¢2]

+(k2-m 2 +i,)-l(k a - m2 +i,) -z Tr[(f-+ m) ¢2(g' +m) ca(f+ - m) /2(g+m) ca]

+(ka-m2+i,)-2Tr[(f_+ m)¢z(k'+m)ca(y+- m) ca(g'+m)¢2]}, (B.34)

in which Tr denotes the trace operator. We use m instead of m Ito denote the lepton mass.

From (B.34),itcan be seen that the sum in (B.34) can be naturally divided into four terms:

T1 =Tr[(_-+ m) ca(]_+m) ¢2(f+- m) ¢2(]_+m) ¢1], (B.35a)

T2-rr [(f-+ m) caC#+m) h(f+- m) ca(#'+m) ¢2],

T3=Tr [(f-+ m) ¢2(#'+m) Ca(f+-m) ¢2(/_+ m) ca],

T4-Tr[(f-+ m) ¢2(#'+m) ca(f+-- m) ¢l(#'q'm) ¢2]-

(B.3,Sb)

(B.35c)

(B.35c)

Hence we can write

(1 ,(2,
S-3+

= e4a264(p- + p+ - kl - k2)
_To

(2_r) 4
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x y'_'{{k2- m2+i_) -2 T1 + (k2-m 2+ ie)-l(k '2-
el,e2

+ (k'2_ m2 + ie)-2T4}.

m2 + ie) -_ (T2+ T3)

(B.36)

After some straight forward though tedious mathematics, one arrives at the following:

el,e2

rn 2 2m 2 _T1 = 8k140(1 - _ cos 0) 1 + k2----_ + k-_0_ cos 0 + _cos30 / -8m 4, (B.37)

1 I
4 _ T2 = _ _ T3 = 8k140/32( 1 -c_20)[1-/32(1- co620)] ,

El,E2 el_e2

(B.38)

1 / m2 2m2"_ E T4=8k_0(l+/3 cos0) 1+._i0- k-_l0
el,e2

/3 COS 0- [3 3 COS 3 0)--8m 4, (B.39)

where/3 = I_. From (B.33) and (B.36) we obtain

_r = e4(21r)8(2klO)-4f_ -4 _To f23 1
(2_)4 (2,_)62cTo

X /{1 E[(k2_m2+ie)_2T 1 +(k2_m2+ie)-l(kr2_rn2+ie)-I (T2+T3)

+(k r2 - m 2 + ie)-2T4] } d3p_d3p+64(p- + p+ -- kl -- k2)

• 4 112/{1= _-7r)2 16_:140_-c/3k10 x E[(k2--m 2 +ie)-2T1

-'l'-(k 2- rrt 2 -t-ie)-I (ka -m 2 + '/e)-l(T2 -t- T3) + (k a -m 2 + ie)-2T4] }

1
x -sin0 dO x 21r.

2
(B.40)

Now v_

k 2 - m 2 = -2k120(1 -/3 cos 0), (B.41)

k r2 -m 2 = -2k120(1 +/3 cos 0), (B.42)
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together with (B.37), (B.38), and (B.39) to arrive at

fo '_1 fo "1._Z(k2-m2+i_)-2T1 sin0 do = iZ(k fz-
E1 ,_2 el ,e2

m 2 + ie)-2T4 sin O dO

m 2 m 2 1 . II+f_l 4m4 1

4 _ -4-s -- + 2(2+ _-_-0l--z-_,=-_ k20 3k_--_o)_ _ll--:_f- (B.43)

_o _r 1 Z (k2 -- m2 + ie)-l(kf2 - rn 2 + ie)-lT2 sin 0 dO
El,E2

_0 'r 1= -_Z(k2-m2+ie)-l(kr2-m2+ie)-lT3sinOdO
else2

4 _2 _ --_(2 f/2)(1 2 1 +]Y]= 8(1 - Z2)+ _ - - Z )_ 1--:-_l"

So from (B.43) and (B.44) we have

j_0lr 1 Z[(k 2 _ m2 --I-ie)-2T1 -t- (k 2 - m 2 + ie)-l(kf2 - m 2 -t- ic) -1 (T2 -F T3)
4el ,(_2

+ (k _ - ,n2 + ie)-2T4] sin 0 dO

=-8(2-_2)+_[2+3(1-_2)-(2-_2)-(1-f_2)]In l+f_l1----:-_f"

16(y2) 1 ___11=-8(1+y)+-_ l+y--_- In _+

4m2 = 1 - f_2. Putting this into (B.40), we havewhere y = -Wr

[e4 1 1 /_k120x8 -(l+y)+_ l+y-

+ x-_-

e4 1 -(i Y)V/i" Y Y T- (4_.)2 W2 X 4_r + - + 2 1 + - In +

[ 2(1 1----_---_ x 41r -(1 -t- y)V/1 - y + +y- _')ha I_ + ,

(B.44)

(B.45)

(B.46)

in "natural" units. This result is the same as the one obtained by Papageorgiu (ref. 2,

eq. (14), p. 159).
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We now consider the process 77 -'* S° in wl_ch S ° is a neutral scalar. Using P8 to denote

the momentum of S ° , the cross section for this process can be written as

(B.47)

in which S denotes the S-matrix. For the reverse decay process S ° -* 3"7, the width F can

be written in the form

(B.48)

From conservation of momentum, we can write

<pslSlkl,¢;k2,e2>=<PslT[kl,Cl;k2,¢2>_4(Ps-kl-k2)
(B.49)

From (B.47) and (B.49) we now have

ii II L2a=_Z <psTkl'¢l;k2'e2> 6(pso-klo-k20)
_I,_2

1 _2 flTo

x (2_.)3 2cTo (2_') 4
(B.50a)

12-- 8c(21r)7 _ <Ps Tkl,el;k2,e2 > 6(pso-2kl
_1, 2

(B.50b)

In (B.50), we assume that we are working in the next frame of S °. Likewise (B.48) can also

be rewritten in the form

F = _-- Z < kl'el;k2'e2 T Ps > ___0 x 4_r x

¢I, 2

i ili= _-_ k_o_ < k1,_1;_2,c2T p, >
_1,_2

_2 _i, °

(2_r)6 (21r)4

(B.51)

From time-reversalinvaxiance, we know that

112111[p,___ <kl'_l;k2'¢2lT[ > = Z < Tkl,el;k2, e2> o

(1,_2 _1,C2

(B.52)
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Therefore from (B.50) and (B.51) we now have

1
1 (2_) 2 F × _ 6_,- 2klO).

In the next frame of S ° ,

= (2_)_r_ 6(,._-4k_o)= 8_r_(.,.2,,,.- s),

(B.53)

(B.54)

in which S is the square of the total momentum (kl + k2) 2. For "Y7 --* H° in which H ° is a

(B.7).neutral Higgs particle, r can be written in the form given by (B.4)
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Appendix C. Fermion Contribution to P(H ° _ 7_/).

In this appendix, we derive the Fermion contribution to the decay width of the decay of

a Higgs particle H ° ---* _f_/. For this case the interaction lagTangian can be written as (ref.

13, eqs.

where

(22.58), (22.78), pp. 676, 682)

(e)x £(h)(z),
_dnt(X) = Zint( ) 4- int

(CAn)

= £Ch)rx =L_Cx) qs_ f _(X)_f(X), int' '
(C.lb)

qjl(z) isthe fermion fieldoperator, Au(x ) the photon fieldoperator, and r/(z)the scalar

Higgs fieldoperator, q/denotes the charge of the fermion, and hI the coupling between the

I-liggsscalarand the fermion. The process H ° ---*7"7 isthird order in the interaction,so that

the relevantterm in the S-matrix is

= 3"_ T L_int(Z, )L_dnt(X2)L_lt(x3) d4x, d4X2 d4z3 (C.2)

The initialand finalstatescan be denoted as

[i > = ]Ph >, and I.f >= ]ka,el;k2, e2 >, (c.3)

in which Ph denotes the momentum of the Higgs scalar,kj,_j,j = I,2, are the momenta and

polarizationsof the the photons.

We use m/and rnh to denote the masses of the fermion and Higgs scalar.The width for

the process isgiven by

1 1/ ] ] I ]2 d3kld3k2fl2" (C.4)r= _oo4 Z <: kl'el; k2'_2 S(3) Ph _ (27r)6
_1,e2
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The S-matrix element can be represented by the diagrams:

Employing standard techniques of field theory, we find

We can separate the two terms on the right hand side of (C.5) and let S(3) -- S_ 3) - S_ 3),

so that

where

T_3) -T_ [(_1 + mr) _l(Idl- _I + mr) h(_l-- _i-- _2 q" mr)I, (C.Sb)
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and

xj,,, [_1-,,_,-=3+,,]-'[_2-=3+,,]-1

c1-k1=_1"k2=e2"k1--(2"k2-'O,

and also

k_= _ =O, (C.IO)

for real photons, we find

T_ 3) -- 4mf(4pl • ClPl • ( - _I" (2Pl2) + 8mf(l " c2pl " kl

+ 4mf(-kl" k2 + m})(1 " e2"

Now we use a standard technique of Feynman parameterization (ref.

pp. 160-197).

(p2_ _rt2 -I-,,)-1 [(Pl -- kl) a - lrna -I-l_,J [(Pl - ]¢1 - k2) 2 - _rt2 + i,]

2/0 -= 1 d]/[(J_ Q)2 -I- P2] -3

where

Q"-=X_l+_(_+_),

3O

(c.9)

(C.II)

14, Section 3.2,

(C.12a)

(C.12b)

where

T_3)=---Tr [(_1-I-mr) _2(J61- _2 + _r&f)_'l(J_l- )_1- _2-{- lrnf)]. (C.8)

The evaluation of the matrix elements (C.6) and (C.6) are quite similar. So we need only

consider (C.6) in detail for illustration. By evaluating the trace in (C.6b), and using the fact

that in the center of momentum frame of the two photons,



p21 -- _Q2 _ m_ + k2z + (k 1 + k2)2y + i,

_ _Q2 _ m_ + 2k 1 • k2y + i_. (C.12c)

Now (C.6) can be rewritten in the form

< kl,el;k2, e21S31[Ph > "- --q_hf(2Phe" 2kl 0 • k20)-l/2_-3/2_4(k 1 -t- k 2 - Ph)

x 1 dyJd4pl[(Pl _Q)2 .b p21] -3T(3). (C.13)

From (C.II) and (C.13),itisapparent that in order to evaluate (C.13) we need to compute

the followingintegrals:

I_ u-- / dz dy d4pl P_lP[ [(Pl _Q)2 + p2] -3, (C.14)

Io - f dz dy d4pl[(Pl -Q)2 +p2] -3 (C.16)

These integrals can be computed using the method of dimensional regularization in which

one firstcomputes the followingintegrals:

(c.15)

I_U(n)= fd-T, dydnpll_lpl_[(pl-Q)2+p2] -3, (c17)

If(n) -- f d.z dy dnpl P_l' [(Pl- Q)2 +/92]-3, (C.18)

Io(n)- f d.T. dy dnpl6 [(FI - Q)2 -I- 1921-3 (C.19)

in which n isa realnumber, which in the finalresultare allowed to approach 4. Details of

thisprocess isgiven in Appendix D.

From the resultsin Appendix D, we find

4P_lp_' p21g#U
= _ilr21_. rgt_o92 4Q#QU]

_ Q)2+P1213- 9. 19211. -02)'1- '
(C.20)

f ..2 Q. (C.21)
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and

Define

1 Ir 2 1 (C.22)

J1 __

(C.23)

By using (C-9)-(C.12), (C.20)-(C.23),we find

(c.24)

Using the definitions of Pl and Q in (C.11) and (C-12), we can simplify (C.24) to

J1 - -i7r2 2mr e I . e 2 f/O 1

rn 2 m 2

where A -- _=_ = -_a.

j_o1-x 4y(1 - x - y) - 1 (C-25)dx dy y(1 - z - y) - A + ie'

The integral in (C-25) can be done after some changes of integration variables and applying

some techniques in complex analysis. The result is

m 2

where for A - > _[,

1
and for A < _[,

32

J1 - -iw2 2mr el • e2Jo, (c.26)

Jo - 2 - 2 (4A - 1) [arcsin (--_) ] 2 , (C.27a)

( 1 [ [_+_/_--A_I1 2



From (C.5), (0.6), (C.23) and (C.26) wehavetherefore

< h,el;k2, e21s_3)lph> = _q2 hi (2pho.2ho-2k20)-l/2a-3/2j_ (h + k2-Pk)

-- -q_ h f (2Ph ° • 2k10" 2k20) -1/2 f/-3/264 (kl + k2 - Ph)

x x ×,1., :0).

It is straight forward to check that

< k_,e_;k2,e21S_S)lph>-- < kl,e_;k2,e21S_S)lph. (O29)

Therefore using (C.3)-(C.8) and (C-28),

r --- i I

1 1

el,e2

f_To d3kld3k2_ 2

X /r 4 X 4rn_ X (el* e2) 2 [Jol2 x _ (21r16
(C.30)

Now

E (el" e2) 2 -- 2,

el,e2

2k10 = 2k20 = Ph° -- rnh, (c.31)

Therefore

p_ m q.fhf x 2 x _ x 2 IJol2 _k16 (kl0 + k20 - Ph,,)
(2,_)1o ,,,_,

1

16 x (27r) 5 q} h_ mh)_ ]Jol 2,
(C.32)

h f is related to the Fermi coupling constant GF by h_ = m_ x 2V"2GF (ref. 13, Section

22.2, eqs. (22.58), (22.70), and (22.83), pp. 676, 679, 684)

1

F- 16 x (2_r) 5 q_ x 2Vf2GF m i )k2 IJol2

-I?14 a2OF rn_A2IJol2.
8,_,n-3

(C.33)

We note that _ is the charge of the fermion in units of the electron charge. Our result
e

agrees with that in the literature. (See ref. 12, eqs. (10) and (11), p. 95.) We note that the

sign of the imaginary part of Jo in (C.27b) is opposite to that of reference 12, equation (11).
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However, since only IJol 2 enters into quantities of physical interest, such as F and _, therefore

this difference in sign of the imaginary part of Jo is not significant.
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Appendix D. Evaluation of certain integrals.

In this appendix, we outline the procedures involved in evaluating the integrals in (C. 14)-

(C-19).

The following integrals can be evaluated by standard methods of calculus.

fO ° umdu M -21+m+1 (D-I)(u2 + M2)I = Cm,t x

provided m is even, m >_ 0, l is an integer >_ 0, t >_ _ + 1, and the coefficients Cm,t are

defined by

(g _- (m- 1-')'

× fo_(O_o) _-_-2 dO

2 ""2

(D.2)

If l is a half-integer, (D.1) still applies with

Cm,, -- [(g- I)('- 2)... ('-2)] -I (m-1.2

Jo_ O)2z-"-2x (cos dO.

1)°° °
2

(D.3)

Using methods of complex analysis, we can show that the same formula (D.1) applies if

M is replaced by iM in (D-l).

/ C//amp(p 2 + M2) -a= dpo {p-1,,-2d[_[ _2 1_12+ M2_-af_(O) ,-- ) n-2
O0

(D-4)

where f_0) denotes the surface area of the n-dimensional unit sphere. Now using (D-l), we

find

/ dnP('P2 + M2) -a -- /__ dP°(-1)aCn-', (_(-pO2- M2)-o_'l'-'_ _(n022

n 1
.a,_ - I. _(0) M-2a+n

= 2(-1) C'n-2,aC"O,a--_ n-2 (D.5)
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From (D.5),itisstraightforward to compute

=2(-1)_ c,,_2,oCo,o__c_2 (M2_Q2)-"+._(D.6)

Now we can evaluate

f_p_. ff2+2p.Q+M2)-_
2(a - 1) OQ# j v ,l

= (-11_2(_- i- _)G-2,o-I
Cz--I

Co,o____-_2(s,2__2)-o+_o.. (_._)

Using similartechniques we can evaluate

n_,p,,_ff2+2".Q+M2)-_=C-I)_(_-2- _)(_-1)-1C_-2)-1

xc,,-2,__2Co,o__n_.°22(s_2_Q2)-o+lq

x .+ (M=+Q=)-I(-_+I+_)
x (-2Q.Q.)], (D-S)

and

ne,_.2ff2+2_.Q+M2)-"=(_1)_(__2__)(__1)-1(__2)-1

×c._2,,,_2q,o_._0!2(M2__2)-o+1+_

[o ° _ ],x -2(o-1-_)(_ Q_)-'Q_(o._)
in which q_ isthe metric tensor

g_ - -gll - -922 - -g33 = 1, (D.IO)

and allg_ with # # v are 0.
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We also note the following:

j_o°° u m -1 0 j_o°°
(lt2 ___f2)c_ dtt -- "_ l 0_ r2

ttD't

(lJ, 2 + M2) a-1

dtt (D.11)

Therefore, by using (D-l), we find

m + 1) (a - 1)-lcm,a-1 •Cm,a-- ex-1
(D.12)

We can now use these results to evaluate

f dn,1 (4P_lp _ _ p2g_) [(Pl- Q)2 + p21]-a

n=(_1)_(_-___)(o_,-1(o__)-,0__2,o_200,o___°2_
(D-13)

Using (D.12) in (D.13), we find

/ dnpl (4P_lp [ _ p2g_)[(Pl- Q)2+ p2] -a

--(-1)_ r_ ((x-1-2) -1Cn-2'aC0 a, -Ta-1 fl(n0")2-

× IgOr(4__ n ) (pl 2 + Q2) (p2) -a+_ -4(4-n)Q_Q" (p12)-0_+_] .
(D-14)

Setting ex = 3, and taking the limit as n --* 4, we find

/ dnpl (4KP_- Pl2g fly) [(Pl- Q)2 + p21]--a

-(--1)_ x 2fl(_0)z p2[g_vl (p21 _Q2)+ 4Q_QV] C2,300,_

_2 1 4Q_Q_,]=_,Y (,2_Q2)+
In similar fashion we find

-d n=(_,)_ (._, __)(._,)-1c.___,

_ c n(°) (d) -°+_(-Q.)-- ( -1)'%+2! 2C'n-2, a 0,,,--_ n-2

(D.15)

(D-16)
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Therefore,

Finally,

d4p_

_.2 _#

= 2(_i)3/2c2,3co,__o)ip_
._r 2 1
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Appendix E. Stopping Power

Consider the reaction

zlz2 --. zlz2x, (E.1)

in which X represents one or more particles produced in the process. Let Z1 be an incident

particle, and Z2 represent a fixed target, whose density is p (number of nuclei per unit

volume). Let _ denote the cross section for the process (E.1), and Ex the energy of the

system X. If we disregard the effect due to recoil of Z2, then by the conservation of energy,

the energy loss of Z1 is equal to Ez. Consider a slab of the targetZz of cross-sectional area

A and thickness Ax.

Figure E. 1

The number of Z2 nuclei in this slab is pAAx. The cross section for an incident particle

Z1 to collide with a -72, producing X is given by

d_
A_ = pAAx _ dEz,

a_x
(E.2)

where we assume the energy of the produced system X to be between Ez and Ez + dEz.
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Therefore the probability for this process is

Aa

PCEx)dEx = --_ = pAz _ dEz, (E.3)

in which P(Ez) represents the probability density for the process. Therefore the total energy

loss by the incident particle Z1 per unit length is given by

dE _m 1 t

-"_ = Ax .--, 0 _xx ] EzP(Ex) dEz (E.4a)

= p Ex "_x dE=. (E.4b)

The - sign in (E.4) signifies the fact that energy is lost by Z1 in the process, so that the

change in its energy dE is negative. (See ref. 15, eq (6-4), page 741.

For two-photon processes of this kind that we have considered

E= = wl + w2, (E.5)

in which again we use the '_natural units" for which ?_ = 1. The cross section is given by

(2.2a). By switching the variables of integration from Wl, w2 to Wl, Ex, and using the fact

dwl dw2 - dwl dE=, (E.6)

which can be obtained from (E.5), (E.4b) can be written in the form

dE

dx dwl ] Ex F(wl, Ez - Wl) × O'7,'r(Wl, E= -- Wl)

t dEx

--- = P -_1 __ Ex -- W 1

-/ [ +
= Pj w--'-lJ w2

(E-7b) is the same as (2.7).

(E.7a)

(E.Tb)
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Figure Captions

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

,

A.I:

A.2:

A.3:

B.la-b:

B.2:

C.la-b:

E.I:

A Feynman diagram for the processes Z1Z2 ---* Z1Z21+l -, Z1Z2 ---* Z1Z28+s -

and Z1Z2 --, Z1Z2V+V -.

A Feynman diagram for the process Z1Z2 -'-* Z1Z2 HO.

Plots of W 2 dL
_-_.

a-d: aT_(W 2) for the reactions 77 --' l+l-,T7 "" s +s-, 77 "" V+V- ant

77"* rl-.

Plots of P(b) for the reaction 208pb2°Spb ---, 2°8pb2°Spbe+e- at different
energies.

Plots of the total cross section for the process 2°8pb208pb _..208 pb2oSpbH O.

Electromagnetic fields generated by a charge q moving along the z-axis.

Protons emitt.ed by two colliding nuclei, viewed along direction of motion of
the nuclei in their center ot momentum lzame.

Cross-sectional view of the collision of two nuclei.

Second order Feynman diagrams for the process 77 "" s+s-.

First order Feynman diagram for the process 77 --* s +s-.

Feynman diagrams representing fermion contribution to the process H 0 -, 77-

A beam of particles Z1 incident on a fixed target Z2.
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