4,776 research outputs found

    Shuttle Global Positioning (GPS) System design study

    Get PDF
    Investigations of certain aspects and problems of the shuttle global positioning system GPS, are presented. Included are: test philosophy and test outline; development of a phase slope specification for the shuttle GPS antenna; an investigation of the shuttle jamming vulnerability; and an expression for the GPS signal to noise density ratio for the thermal protection system

    Using the X-FEL to understand X-ray Thomson scattering for partially ionized plasmas

    Full text link
    For the last decade numerous researchers have been trying to develop experimental techniques to use X-ray Thomson scattering as a method to measure the temperature, electron density, and ionization state of high energy density plasmas such as those used in inertial confinement fusion. With the advent of the X-ray free electron laser (X-FEL) at the SLAC Linac Coherent Light Source (LCLS) we now have such a source available in the keV regime. One challenge with X-ray Thomson scattering experiments is understanding how to model the scattering for partially ionized plasmas. Most Thomson scattering codes used to model experimental data greatly simplify or neglect the contributions of the bound electrons to the scattered intensity. In this work we take the existing models of Thomson scattering that include elastic ion-ion scattering and the electron-electron plasmon scattering and add the contribution of the bound electrons in the partially ionized plasmas. Except for hydrogen plasmas almost every plasma that is studied today has bound electrons and it is important to understand their contribution to the Thomson scattering, especially as new X-ray sources such as the X-FEL will allow us to study much higher Z plasmas. Currently most experiments have looked at hydrogen or beryllium. We will first look at the bound electron contributions to beryllium by analysing existing experimental data. We then consider several higher Z materials such as Cr and predict the existence of additional peaks in the scattering spectrum that requires new computational tools to understand. For a Sn plasma we show that the bound contributions changes the shape of the scattered spectrum in a way that would change the plasma temperature and density inferred by the experiment.Comment: 13th International Conference on X-ray Lasers Paris, France June 10, 2012 through June 15, 201

    Average-Atom Model for X-ray Scattering from Warm Dense Matter

    Get PDF
    A scheme for analyzing Thomson scattering of x-rays by warm dense matter, based on the average-atom model, is developed. Emphasis is given to x-ray scattering by bound electrons. Contributions to the scattered x-ray spectrum from elastic scattering by electrons moving with the ions and from inelastic scattering by free and bound electrons are evaluated using parameters (chemical potential, average ionic charge, free electron density, bound and continuum wave functions, and occupation numbers) taken from the average-atom model. The resulting scheme provides a relatively simple diagnostic for use in connection with x-ray scattering measurements. Applications are given to dense hydrogen, beryllium, aluminum, titanium, and tin plasmas. At high momentum transfer, contributions from inelastic scattering by bound electrons are dominant features of the scattered x-ray spectrum for aluminum, titanium, and tin.Comment: 22 pages, 10 figures Presentation at Workshop IV: Computational Challenges in Warm Dense Matter at IPAM (UCLA) May 21 - 25, 201

    Performance study of Staging Variable on Two-Stage-To-Orbit Reusable Launch Vehicles

    Get PDF
    The purpose of this research is to investigate the effects of staging variables on Two-Stage-To-Orbit reusable launch vehicles, specifically, the question of what measurable factors play important roles in staging performance. Three different configurations (Rocket-Rocket, Turbojet-Rocket and Turbine Based Combined Cycle-Rocket) were considered. The software, Program to Optimize Simulated Trajectories (POST), was used to analyze these configurations. Vehicle coasting time, staging dynamic pressure and staging Mach number were all varied to determine their influence on the final payload

    Integration of software tools to aid the implementation of a DFM strategy

    Get PDF
    corecore