1,063 research outputs found

    Practice Into Policy and Policy Into Practice: An Interview with Dr. Carol Dahir

    Get PDF
    A leader in the field of school counseling and school counselor education, Dr. Carol Dahir has engaged in policy development at state, national, and international levels. Through her work, she has served as an advocate for the profession and its advancement. Dr. Dahir co-developed the American School Counselor Association (ASCA) National Standards for School Counseling Programs (1997) alongside Dr. Chari Campbell, which became guiding principles for the profession. Through her work, Dr. Dahir believes strongly in the implementation of moving policy into practice, highlighting this as a major theme of her reflection on our interview. The author offers implications for school counselors and counselor educators

    Gender Differences in Response to a School-Based Mindfulness Training Intervention for Early Adolescents

    Get PDF
    Mindfulness training has been used to improve emotional wellbeing in early adolescents. However, little is known about treatment outcome moderators, or individual differences that may differentially impact responses to treatment. The current study focused on gender as a potential moderator for affective outcomes in response to school-based mindfulness training. Sixth grade students (N = 100) were randomly assigned to either the six weeks of mindfulness meditation or the active control group as part of a history class curriculum. Participants in the mindfulness meditation group completed short mindfulness meditation sessions four to five times per week, in addition to didactic instruction (Asian history). The control group received matched experiential activity in addition to didactic instruction (African history) from the same teacher with no meditation component. Self-reported measures of emotional wellbeing/affect, mindfulness, and self-compassion were obtained at pre and post intervention. Meditators reported greater improvement in emotional wellbeing compared to those in the control group. Importantly, gender differences were detected, such that female meditators reported greater increases in positive affect compared to females in the control group, whereas male meditators and control males displayed equivalent gains. Uniquely among females but not males, increases in self-reported self-compassion were associated with improvements in affect. These findings support the efficacy of school-based mindfulness interventions, and interventions tailored to accommodate distinct developmental needs of female and male adolescents

    Measuring The Impact Of A School-Based Contemplative Practice For Adolescents

    Get PDF
    Throughout growing literature, contemplative practices have been identified as effective approaches to promote wellness in adolescence and young adulthood, with calls to incorporate contemplative approaches in the school setting. One type of contemplative practice called loving-kindness meditation (LKM) offers practitioners with a method for extending compassion toward self and others, and shows promise for strengthening individuals’ wellbeing. Yet, despite its indicated benefits, studies of LKM with youth are minimal, and studies of LKM interventions in the school setting are scarce. The goal of this study was to examine students’ inner resources and protective factors prior to and following a school-based intervention of a daily LKM practice. I employed a nonequivalent control group quasi-experimental design and measured students’ levels of resilience, hope, inner peace, and emotional intelligence. I conducted a repeated measures multivariate analysis of variance to determine differences between groups and across time. Findings indicated that there was not a statistically significant difference between treatment and control groups in students’ reported levels of resilience, hope, inner peace, and emotional intelligence. Yet, when students’ frequency of practice was included in the model, the results showed that the between-subjects effects for frequency of practice was significant. The results suggest potential influence between the intervention and students’ reported outcomes; however, the findings should be interpreted with caution due to limitations of the study, and further examination is warranted. Following interpretation of the results, I provide a discussion of the limitations, implications for school-based interventions, and suggestions for future research

    Kaolin shear thickening fluid reinforced UHMWPE composites for protective clothing

    Get PDF
    This study reports the designing and reinforcing of impact resistant textile composites using kaolin based shear thickening colloidal dispersions as the filler material. The reinforced fabric is targeted for the chest protection of cricketers. A shear thickening fluid (STF) has been prepared using kaolin and glycerol, at kaolin volume fractions of 34% and 38%. A combination of mixing techniques including mechanical blending and ultra-sonication are used to prepare the colloidal dispersions. Ultra high molecular weight polyethylene (UHMWPE) woven fabric structures are reinforced with the STF. The fabric coated with STF are then measured for their flexibility, and impact resistance using Shirley stiffness tester and a series of modified drop tower tests respectively. Kaolin STF at 38% volume fraction shows best results in impregnated fabric samples. STF reinforced fabrics provide better impact resistance with improved moisture absorption and flexibility in comparison to the conventional chest guard material

    Carbon and Hydrogen Isotope Measurements of Alcohols and Organic Acids by Online Pyroprobe-GC-IRMS

    Get PDF
    The detection of methane in the atmosphere of Mars, combined with evidence showing widespread water-rock interaction during martian history, suggests that the production of methane on Mars may be the result of mineral surface-catalyzed CO2 and or CO reduction during Fisher-Tropsch Type (FTT) reactions. A better understanding of these reaction pathways and corresponding C and H isotope fractionations is critical to deciphering the synthesis of organic compounds produced under abiotic hydrothermal conditions. Described here is a technique for the extraction and analysis of both C and H isotopes from alcohols (C1-C4) and organic acids (C1-C6). This work is meant to provide a "proof of concept" for making meaningful isotope measurements on complex mixtures of solid-phase hydrocarbons and other intermediary products produced during high-temperature and high-pressure synthesis on mineral-catalyzed surfaces. These analyses are conducted entirely "on-line" utilizing a CDS model 5000 Pyroprobe connected to a Thermo Trace GC Ultra that is interfaced with a Thermo MAT 253 isotope ratio mass spectrometer operating in continuous flow mode. Also, this technique is designed to carry a split of the GC-separated product to a DSQ II quadrupole mass spectrometer as a means of making semi-quantitative compositional measurements. Therefore, both chemical and isotopic measurements can be carried out on the same sample

    Cryogenic Carbonate Formation on Mars: Clues from Stable Isotope Variations Seen in Experimental Studies

    Get PDF
    Discoveries of large deposits of sedimentary materials on the planet Mars by landers and orbiters have confirmed the widely held hypothesis that water has played a crucial role in the development of the martian surface. Recent studies have indicated that both water ice and liquid water may have been present and in the case of water ice perhaps is still present on or near the surface of Mars. However, there remains much controversy about the prevailing atmospheric conditions and climate of Mars during its history and whether liquid water existed on the martian surface simply during discrete geological events or whether this water was present over relatively much longer geologic time periods. The recent identification of Ca-rich carbonate by the Phoenix lander as well as its measurement of the isotopic composition of atmospheric CO2 has shown the importance of understanding the carbonates on Mars as an important sink of atmospheric carbon. This work compliments that of our past experiments where we produced cryogenic calcite in open containers, as analogs for terrestrial aufeis formation, and as a means for evaluating the fractionation of C-13 in CO2 during bicarbonate freezing [13]. Unlike our previous experiments in which carbonates were grown in ambient laboratory condition in open containers (atmospheric pressure and composition), this work attempts to quantify the amount of delta C-13 enrichment possible in both fluids and secondary carbonates formed from freezing of bicarbonate fluids under martian-like atmospheric conditions. Morphologic textures of produced carbonates in these experiments are also examined under SEM in order to identify the effect that the cryogenic freezing process has on the mineral's mineralogy. Understanding the role of kinetic isotope fractionation during formation of carbonates under martian-like conditions will aid in our ability to quantify the isotopic composition of the carbonate sink furthering our ability to model the climate history of Mars

    Hydrogen Isotope Measurements of Organic Acids and Alcohols by Pyrolysis-GC-MS-TC-IRMS: Application to Analysis of Experimentally Derived Hydrothermal Mineral-Catalyzed Organic Products

    Get PDF
    We report results of experiments to measure the H isotope composition of organic acids and alcohols. These experiments make use of a pyroprobe interfaced with a GC and high temperature extraction furnace to make quantitative H isotope measurements. This work compliments our previous work that focused on the extraction and analysis of C isotopes from the same compounds [1]. Together with our carbon isotope analyses our experiments serve as a "proof of concept" for making C and H isotope measurements on more complex mixtures of organic compounds on mineral surfaces in abiotic hydrocarbon formation processes at elevated temperatures and pressures. Our motivation for undertaking this work stems from observations of methane detected within the Martian atmosphere [2-5], coupled with evidence showing extensive water-rock interaction during Mars history [6-8]. Methane production on Mars could be the result of synthesis by mineral surface-catalyzed reduction of CO2 and/or CO by Fischer-Tropsch Type (FTT) reactions during serpentization [9,10]. Others have conducted experimental studies to show that FTT reactions are plausible mechanisms for low-molecular weight hydrocarbon formation in hydrothermal systems at mid-ocean ridges [11-13]. Our H isotope measurements utilize an analytical technique combining Pyrolysis-Gas Chromatograph-Mass Spectrometry-High Temperature Conversion-Isotope Ratio Mass Spectrometry (Py-GC-MS-TC-IRMS). This technique is designed to carry a split of the pyrolyzed GC-separated product to a Thermo DSQII quadrupole mass spectrometer as a means of making qualitative and semi-quantitative compositional measurements of separated organic compounds, therefore both chemical and isotopic measurements can be carried out simultaneously on the same sample

    Detection of Abiotic Methane in Terrestrial Continental Hydrothermal Systems: Implications for Methane on Mars

    Get PDF
    The recent detection of methane in the Martian atmosphere and the possibility that its origin could be attributed to biological activity, have highlighted the importance of understanding the mechanisms of methane formation and its usefulness as a biomarker. Much debate has centered on the source of the methane in hydrothermal fluids, whether it is formed biologically by microorganisms, diagenetically through the decomposition of sedimentary organic matter, or inorganically via reduction of CO2 at high temperatures. Ongoing research has now shown that much of the methane present in sea-floor hydrothermal systems is probably formed through inorganic CO2 reduction processes at very high temperatures (greater than 400 C). Experimental results have indicated that methane might form inorganically at temperatures lower still, however these results remain controversial. Currently, methane in continental hydrothermal systems is thought to be formed mainly through the breakdown of sedimentary organic matter and carbon isotope equilibrium between CO2 and CH4 is thought to be rarely present if at all. Based on isotopic measurements of CO2 and CH4 in two continental hydrothermal systems, we suggest that carbon isotope equilibration exists at temperatures as low as 155 C. This would indicate that methane is forming through abiotic CO2 reduction at lower temperatures than previously thought and could bolster arguments for an abiotic origin of the methane detected in the martian atmosphere

    Development and Implementation of a Culturally Tailored, Community-Based Intervention to Raise Awareness of Brain Health Among African Americans

    Full text link
    African Americans bear a disproportionate burden of age-related cognitive impairment in the United States compared to Whites or Hispanics. African Americans experience greater prevalence, higher risk, and lower rates of treatment and diagnosis for dementia. In response to these health disparities the Alzheimer’s Association developed and implemented the Healthy Brain Initiative (HBI) demonstration project, the first community-level intervention to help reduce health disparities related to cognitive impairment among African Americans. The HBI promotes awareness of brain health, understanding of the heart-brain connection, and seeks to increase African American baby boomers engagement in health-protective behaviors to promote brain and overall health. The intervention was developed and implemented following engagement of local chapters and expert advisors, extensive formative evaluation to test intervention concepts, messages and materials, research on theoretical approaches and intervention strategies, and development of the HBI program theory or logic model. The core elements of the intervention included development of strategic partnerships, conduct of knowledge and awareness building educational workshops, community events and use of local media to promote the intervention and recruit participants

    Second cohomology for finite groups of Lie type

    Get PDF
    Let GG be a simple, simply-connected algebraic group defined over Fp\mathbb{F}_p. Given a power q=prq = p^r of pp, let G(Fq)⊂GG(\mathbb{F}_q) \subset G be the subgroup of Fq\mathbb{F}_q-rational points. Let L(λ)L(\lambda) be the simple rational GG-module of highest weight λ\lambda. In this paper we establish sufficient criteria for the restriction map in second cohomology H2(G,L(λ))→H2(G(Fq),L(λ))H^2(G,L(\lambda)) \rightarrow H^2(G(\mathbb{F}_q),L(\lambda)) to be an isomorphism. In particular, the restriction map is an isomorphism under very mild conditions on pp and qq provided λ\lambda is less than or equal to a fundamental dominant weight. Even when the restriction map is not an isomorphism, we are often able to describe H2(G(Fq),L(λ))H^2(G(\mathbb{F}_q),L(\lambda)) in terms of rational cohomology for GG. We apply our techniques to compute H2(G(Fq),L(λ))H^2(G(\mathbb{F}_q),L(\lambda)) in a wide range of cases, and obtain new examples of nonzero second cohomology for finite groups of Lie type.Comment: 29 pages, GAP code included as an ancillary file. Rewritten to include the adjoint representation in types An, B2, and Cn. Corrections made to Theorem 3.1.3 and subsequent dependent results in Sections 3-4. Additional minor corrections and improvements also implemente
    • …
    corecore