90 research outputs found

    N-representability and stationarity in time-dependent density functional theory

    Full text link
    To construct an N-representable time-dependent density-functional theory, a generalization to the time domain of the Levy-Lieb (LL) constrained search algorithm is required. That the action is only stationary in the Dirac-Frenkel variational principle eliminates the possibility of basing the search on the action itself. Instead, we use the norm of the partial functional derivative of the action in the Hilbert space of the wave functions in place of the energy of the LL search. The electron densities entering the formalism are NN-representable, and the resulting universal action functional has a unique stationary point in the density at that corresponding to the solution of the Schr\"{o}dinger equation. The original Runge-Gross (RG) formulation is subsumed within the new formalism. Concerns in the literature about the meaning of the functional derivatives and the internal consistency of the RG formulation are allayed by clarifying the nature of the functional derivatives entering the formalism.Comment: 9 pages, 0 figures, Phys. Rev. A accepted. Introduction was expanded, subsections reorganized, appendix and new references adde

    Local Isoelectronic Reactivity of Solid Surfaces

    Full text link
    The quantity w^N(r) = ( 1/ k^2 T_el)[partial n(r, T_el) / partial T_el]_(v(r),N) is introduced as a convenient measure of the local isoelectronic reactivity of surfaces. It characterizes the local polarizability of the surface and it can be calculated easily. The quantity w^N(r) supplements the charge transfer reactivity measured e.g. by the local softness to which it is closely related. We demonstrate the applicability and virtues of the function w^N(r) for the example of hydrogen dissociation and adsorption on Pd(100).Comment: RevTeX, 13 pages, 3 figures, to appear in Phys. Rev. Let

    A simplified microwave-based motion detector for home cage activity monitoring in mice

    Get PDF
    Background: Locomotor activity of rodents is an important readout to assess well-being and physical health, and is pivotal for behavioral phenotyping. Measuring homecage-activity with standard and cost-effective optical methods in mice has become difficult, as modern housing conditions (e.g. individually ventilated cages, cage enrichment) do not allow constant, unobstructed, visual access. Resolving this issue either makes greater investments necessary, especially if several experiments will be run in parallel, or is at the animals' expense. The purpose of this study is to provide an easy, yet satisfying solution for the behavioral biologist at novice makers level. Results: We show the design, construction and validation of a simplified, low-cost, radar-based motion detector for home cage activity monitoring in mice. In addition we demonstrate that mice which have been selectively bred for low levels of anxiety-related behavior (LAB) have deficits in circadian photoentrainment compared to CD1 control animals. Conclusion: In this study we have demonstrated that our proposed low-cost microwave-based motion detector is well-suited for the study of circadian rhythms in mice
    • …
    corecore