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1 Introduction and preliminaries
Ran and Reurings [1] gave a generalization of Banach contraction principle to partially
ordered metric spaces. Since then, many authors obtained generalization and extension
of the results of [2-7].

In particular, Ciri¢ et al. [3] extended the results of [1, 5, 6] to partially ordered Menger
probabilistic metric spaces.

Samet et al. [8] introduced the notion of « -1/ -contractive type mappings and established
some fixed point theorems for such mappings in complete metric spaces.

Cho [9] obtained a generalization of the results of [3] by introducing the concept of
a-contractive type mappings in Menger probabilistic metric spaces.

Recently, Wu [10] obtained a generalization of the results of [3], and improved and ex-
tended the fixed point results of [4, 11, 12]. Also, Kamran et al. [13] introduced the notion
of probabilistic G-contractions in Menger PM-spaces endowed with a graph G and ob-

tained some fixed point results. Especially, they obtained the following result.

Theorem 1.1 Let (X,F, A) be a complete Menger PM-space, where A is of HadZi¢-type.
Let G = (V(G), E(G)) be a directed graph such that V(G) = X and Q C E(G). Suppose that
a map f : X — X satisfies f preserves edges and there exists k € (0,1) such that, for all
x,y € X with (x,y) € E(G),

F}‘x,fy(kt) > Fx,y(t)~

Assume that there exists xo € X such that (xo,fxo) € E(G). If either f is orbitally G-
continuous or G is a C-graph, then f has a fixed point in [x0]g.

Further if (x,y) € E(G) for any x,y € M, where M = {x € X : (x,fx) € E(G)}, then f has a
unique fixed point.
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In this paper, we give some new fixed point theorems which are generalizations of the re-
sults of [3, 9, 10, 13], by introducing a concept of generalized probabilistic G-contractions
in Menger PM-spaces with a directed graph G = (V(G), E(G)) such that V(G) = X and
Q C E(G).

We recall some definitions and results which will be needed in the sequel.

A mapping f : R — [0, 00) is called a distribution if the following conditions hold:

(1) f is nondecreasing and left-continuous;

(2) sup{f(t):teR}=1;

(3) inf{f(t):teR} =0.

We denote by D the set of all distribution functions.

Let € : R — [0, 00) be a function defined by

0 (t<0)
€(t) =
1 (¢>0).
Then ¢y € D.

Let A :[0,1] x [0,1] — [0,1] be a mapping such that

(1) A(a,b) = A(b,a) forall a,b € [0,1];

(2) A(A(a,b),c) = Ala, A(b,c)) for all a, b, c € [0,1];

(3) A(a,1)=aforalla e [0,1];

(4) A(a,b) > A(c,d), whenever a > cand b > d for all a, b, c,d € [0,1].
Then A is called a triangular norm (for short t-norm).

We denote N by the set of all natural numbers.

For a t-norm A, we consider the following notation:
ANE) = A(t, 1), A"()= A(t, A"(t)) foralln e Nandte[0,1].
A t-norm A is said to be of Hadzic-type [14] whenever the family of {A"(£)}32; is

equicontinuous at ¢ = 1.
For example, the minimum ¢-norm A, defined by

A(a,b) = min{a, b}, Va,be[0,1],
is of Hadzi¢-type.
It is easy to see that the following are equivalent (see [14]):
(1) for a t-norm A,
it is of Hadzi¢-type; (1.1)
(2) given € € (0,1), thereis a § € (0,1) such that A”(x) >1 — € for all n € N, whenever
x>1-6.
Also, it is well known that if A satisfies condition A(a,a) > a for all a € [0,1], then A =

A,, (see [15]). Hence we have

Vaec[0,1], Al@a)>a <<— A=A,.
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Let X be a nonempty set, and let A be a t-norm. Suppose that a mapping F: X x X — D
(for x,y € X, we denote F(x,y) by F,,) satisfies the following conditions:

(PM1) F,,(t) = €o(t) forall £ € R if and only if x = y;

(PM2) F,,=F,,forallx,yecX;

(PM3) Fy,(t+5) > A(Fx(£), F,y(s)) forallx,y,z € X and all £,s > 0.

Then a 3-tuple (X, F, A) is called a Menger probabilistic metric space (briefly, Menger
PM-space) [16, 17].

Let (X, F, A) be a Menger PM-space and € X, and let € > 0 and A € (0,1].

Schweizer and Sklar [18] brought in the notion of neighborhood U,(€, ) of x, where
U, (g, 1) is defined as follows:

U(e,)) ={y € X : Fyyle) >1 -1}
The family
{U(e,1) :x € X,e>0,1 € (0,1]} 12)

does not necessarily determine a topology on X (see [19, 20]).

It is well known that if A satisfies condition
sup{A(t,£):0<t<1} =1 1.3)

then (1.2) determines a Hausdorff topology on X, and it is called (¢, A)-topology.
So if (1.3) holds, then Menger space (X, F, A) is a Hausdorff topological space in the
(€,1)-topology (see [18, 21]).

Remark 1.1 The following are satisfied:
(1) condition (1.3) is the weakest condition which ensure the existence of the
(€, 1)-topology (see [19]);
(2) condition (1.1) = condition (1.3) (see [22]).

Let (X, F, A) be a Menger PM-space, and let {x,} be a sequence in X and x € X. Then we
say that
(1) {x,} is convergent to x (we write lim,_, « %, = x) if and only if, given € > 0 and
A €(0,1), there exists ny € N such that F, 4(€) >1— A, for all n > ny.
(2) {4} is a Cauchy sequence if and only if, given € > 0 and A € (0,1), there exists nyp € N
such that Fy, », (€) >1— A, for all m > n > ny.
(3) (X, F,A) is complete if and only if each Cauchy sequence in X is convergent to some

point in X.

Example 1.1 Let D be a distribution function defined by

0 (t<0),
1-e* (¢>0).

D(t) =
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Let

€o(t) (x=y)

Fx,y(t) =
Dizts) (79,

for all x,y € X and ¢ > 0, where d is a metric on a nonempty set X.
Then (X, F, A,,) is a Menger PM-space (see [18]).

Remark 1.2 If (X,d) is complete, then (X, F, A,,) is complete. In fact, let {x,} be any
Cauchy sequence in (X, F, A,).
Then

lim D<4> = lim F ., %) =1
Hm—>00 (%0, X H—> 00
for all ¢ > 0, which implies lim,, ,,,, oo d(%,, %,,) = 0.

Hence, {x,} is a Cauchy sequence in (X, d). Since (X, d) is complete, there exists x, € X
such that lim,,_, o, d(x,,, %) = 0.

Thus, we have

for all £ > 0. Hence, (X, F, A,,) is complete.
From now on, let
= [:10,00 — [0,00) | lim ¢"(1) =0, ¢ >0}
and let

®, = {¢ :[0,00) = [0,00) | V£ >0,3r > £ s.t. lim ¢"(r) = 0}.

Note that ® C ®,,.

Fang [23] gave the corrected version of Theorem 12 of [11] by introducing the notion of
right-locally monotone functions as follows: ¢ : [0, 00) — [0, 00) is right-locally monotone
if and only if V£ > 0, 38 > 0 s.t. it is monotone on [¢, £ + §).

Lemma 1.1 [23] The following are satisfied:
(1) If a right-locally monotone function ¢ : [0,00) — [0, 00) satisfies

¢(0) =0, o)<t and lintl+ info(r)<t forallt>O0,

then ¢ € ®.
(2) If a function ¢ : [0,00) — [0, 00) satisfies

o)<t and lir£1+ supp(r) <t forallt>0,

then ¢ € ®,,.
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(3) Ifa function « : [0,00) — [0,1) is piecewise monotone and
o) =at)t forallt>0,
then ¢ € .
Lemma 1.2 [23] If¢ € D, then Vt >0, Ir >t s.t. ¢(r) < t.
Lemma 1.3 [23] Let (X, F, A) be a Menger PM-space, and let x,y € X. If
Fuy(¢(8)) = Fuy(0)
forallt>0,where ¢ € D, then x =y.

Lemma 1.4 [18] Let (X, F, A) be a Menger PM-space and x,y € X, where A is continuous.
Suppose that {x,} is a sequence of points in X. If lim,_, o %, = X, then lim,,_, o inf Fy, ,(£) =
F,,(t) forall t > 0.

Lemma 1.5 Let (X, F, A) be a Menger PM-space, where A is of HadZi¢-type. Let {x,} be a
sequence of points in X such that x,_; # x, for all n € N. If there exists ¢ € ®,, such that

Fxn,xm (¢(s)) > min{Fxn_l,xm_l (s), Fxﬂ_l,xn (s), Fxm_l,xm (S)} (L4)
foralls>0 and all n,m €N, then for each t > 0 there exists r > t such that
Fypn () = A" (F,ch+1 (t - ¢(r))) forallm>n+1. (1.5)

Proof 1t is easy to see that (1.4) implies that ¢(¢) > 0 for all £ > 0. In fact, if there exists
to > 0 such that ¢(z;) = 0, then we obtain

0= Fxn,xn (¢(t0)) > Fxn,l,xn (tO) >0

which is a contradiction.
We claim that

Fypp () > Fy 5 () forallu>0andneN.
From (1.4) we have
Fxn,xml (d)(s)) = min{Fxn,l,xn (s)s Fxn,xml (S)}

foralls>0andall » € N.

If there exists #n € N such that F,, | ,,(s) > F;, . ., (s) for all s > 0, then F, .  (¢(s)) >
Fy,x,,,(8) for all s > 0. Thus, x,, = %,,,1, which is a contradiction. Hence we have F,,_, ., (s) <
Fy, 5., (s) foralls >0 and # € N, and so

Fx,,,xml (¢(s)) > Fxﬂ_l,xn (s)

foralls>0and n e N.
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Since ¢ € @, for each u > 0, there exists v > u such that

o) <u.

Hence,

Fxn,xn+1 (Lt) > Fxn,xml (¢(V)) > Fxn_l,xn (V) = Fxn_l,xn (Lt)

for all # > 0 and # € N. So the claim is proved.
Let t > 0 be given. By Lemma 1.2, there exists r > ¢ such that

o(r) < t.

By induction, we show that (1.5) holds.
Letm=n+1.
Then

Frpitn ()
> Fryp (£~ 0(1)
= AP (£~ $(),1))
> Ay (£ = 0 (1))

Thus, (1.5) holds for m = n + 1.
Assume that (1.5) holds for some fixed m > n + 1. That is,

Frpiom () = A" (Fy 1 (6= ¢(r)))  holds for some m > 1+ 1.

Then

Fxn,xm+1 (t)

= Fxn,xm+1 (t - ¢(V) + ¢(7’))
> A(Frptr (£ = 0(1), Fryy it (9()).

From (1.4) we obtain

Fxn+1vxm+l (¢(V))

> min{Fy,, 1, (") Faptyy (1) Frpptr (1)}

By the above claim, since Fy,, ., (£) > Fy, x, ., (£), from (1.4) and (1.7) we obtain

Fxn+1»xm+1 (¢(r))
> min{Fy, x,, (&), Fx,x,,, (1)}
> min{ A" (Ey, 1 (£ = (1)), Fpryen (£ = 0)}

= A" (Fxn,Xnu (t - ¢(r)))

Page 6 of 21

(1.6)

(1.9)
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Thus, from (1.8) and (1.9) we have

IS
= A(Fxn,xn+1 (t - ¢(V)), A" (Fxn,xml (t - ¢(F))))
= A" (Fypn (E= 0(1)).

Hence, (1.5) holds for all m > n + 1. O

Lemma 1.6 [24] Let (X,d) be a metric space. Suppose that F : X x X — D is a mapping
defined by

F(x,y)(t) = Fx,y(t) =¢€o (t - d(x:y))

forallx,ye X and all t > 0.
Then (X, F, A,,) is a Menger PM-space, which is called a Menger PM-space induced by
the metric d.

Remark 1.3 Let (X, d) be a metric space. Suppose that (X, F, A,,) is a Menger PM-space
induced by d.
Then we have the following.
(1) Iff:X — X is continuous in (X, d), then it is continuous in (X, F, A,,).
(2) If a sequence {x,} is convergent to a point x in (X, d), then it is convergent to x in
(X,F,A,).
(3) If (X,d) is complete, then (X, F, A,,) is complete.

Lemma 1.7 [25] IfX is a nonempty set and h: X — X is a function, then there exists Y C X
such that h(Y) = h(X) and h: Y — X is one-to-one.

Let X be a nonempty set, and let Q = {(x, x) : x € X} the diagonal of the Cartesian product
X xX.

Let G be a directed graph such that the following conditions are satisfied:

(1) the set V(G) of its vertices coincides with X, i.e. V(G) = X;

(2) the set E(G) of its edges contains all loops, i.e. 2 C E(G).

If G has no parallel edges, then we can identify G with the pair (V(G), E(G)).

Let G = (V(G), E(G)) be a directed graph.

Then the conversion of the graph G (denoted by G™!) is an ordered pair (V(G™), E(G™))
consisting of a set V(G™) of vertices and a set E(G™!) of edges, where

V(G =V(G) and E(G)={#y) eXxX:(yx) cEG)}
Note that G = (V(G), E(G™)).
Given a directed graph G = (V(G), E(G)), let G= (V(é),E(é)) be a directed graph such

that

V(G)=V(G) and E(G)=EG)UE(G™).
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Forx,y € V(G), let p = (x = x9, %1, %2, ...,%y = ) be a finite sequence such that
(®y-1,%,) € E(G) forn=1,2,...,N.

Then p is called a path in G from x to y of length N.

Denote E(G) by the family of all path in G.

If, for any x,y € V(G), there is a path p € E(G) from x to y, then the graph G called
connected. A graph G is called weakly connected, whenever G is connected.

Let G be a graph such that E£(G) is symmetric and x € V(G).

Then the subgraph G, = (V(Gy), E(G,)) is called component of G containing x if and only
if there is a path p € E(G) beginning at x such that

vep forallve V(G,) and eCp forallee E(G,).
Define a relation i on V(G) as follows:
(9,2)eN <= thereisap e E(G) from yto z.

Then the relation R is an equivalence relation on V(G), and [x]g = V(G,), where [x] is
the equivalence class of x € V(G).

Note that the component G, of G containing x is connected.

For the details of the graph theory, we refer to [26].

Let (X, F, A) be a Menger PM-space, and let G = (V(G), E(G)) be a directed graph such
that V(G) = X and Q C E(G).

Then the graph G is said to be a C-graph if and only if, for any sequence {x,} C X
with lim, . %, = %, € X, there exist a subsequence {x,,} of {x,} and an N € N such
that (x,,,x.) € E(G) (resp. (x4, %,,) € E(G)) for all k > N whenever (x,,%,.1) € E(G) (resp.
(%n11,%,) € E(G)) for all m € N.

The following definitions are in [13].

Let (X, F, A) be a Menger PM-space, and let G = (V(G), E(G)) be a directed graph such
that V(G) = X and Q C E(G). Let f : X — X be a map. Then we say that:

(1) f is continuous if and only if, for any x € X and a sequence {x,} C X with

limy,_, o0 %, = %,
lim fx, = fx.
n—00

(2) fis G-continuous if and only if, for any x € X and a sequence {x,} C X with
lim,,_, o0 %, = x and (x,,,%,,41) € E(G) for all m € N,

lim fx, = fx.
n— 00

(3) f is orbitally continuous if and only if, for all x,y € X and any sequence {k,} C N with

hmn—)oofk"x =Y

lim 5 = fy.

n—00
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(4) f is orbitally G-continuous if and only if, for all x, y € X and any sequence {k,} C N
with lim,,_, oo f*x = y and (X, for+ly) € E(G) for all k € N,

lim fffx = fy.
n—00

2 Main results
From now on, let (X, F, A) be a Menger PM-space, where A is a t-norm of HadzZi¢-type.
Let G = (V(G), E(G)) be a directed graph satisfying conditions

V(G)=X and Q CE(G).

A map f : X — X is said to be a generalized probabilistic G-contraction if and only if the
following conditions are satisfied:

(1) f preserves edges of G, i.e. (x,y) € E(G) = (fx,fy) € E(G);

(2) there exists ¢ € ®,, such that

fo,fy (¢(t)) = min{Fx,y(t): Fx,j’x(t)7Fy,j’y(t)} (21)
for all x,y € X with (x,y) € E(G) and all £ > 0.

Theorem 2.1 Let (X,F, A) be complete. Suppose that a map f : X — X is a generalized
probabilistic G-contraction. Assume that there exists xy € X such that (xo,fxo) € E(G). If
either f is orbitally G-continuous or A is a continuous t-norm and G is a C-graph, then f
has a fixed point in [xo]g.

Further if (x,y) € E(G) for any x,y € M, where M = {x € X : (x,fx) € E(G)}, then f has a
unique fixed point.

Proof Let x¢ € X be such that (xo,fx¢) € E(G). Let x,, = f"x, for all n e NU {0}.

If there exists 1y € N such that x,,;, = x,,,.41, then x,,; = %51 = f%,,, and so x,,, is a fixed
point of f.

Consider the path p in G from x¢ to X, 41:

p= (xo’xl;xZ’wan() = xn0+1) € E(G)

Then the above path is in G. Hence, Ky = Xng+1 € [%olE

Hence, the proof is finished.

Assume that x,,_; # x, forall n € N.

As in the proof of Lemma 1.4, we have ¢(£) > 0 for all £ > 0.

Since f is a generalized probabilistic G-contraction, (x,, x,.1) € E(G) foralln =0,1,2,...,
and from (2.1) with x = x,,_1, y = x,, we have

Fxn,xml ((rb(t)) = fon—lfxn (¢(t))
> min{Fxnil,xn (t), Fx”,lzfxn,l (t); Fxn’fxn (t) }
= min{Fy, , x,(£), Fay i (8)}

forallt>0and n e N.
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If there exists n € N such that F,_, ., (t) > F, (t) for all ¢ > 0, then

n¥n+l

Fxn,xml (¢(t)) Z Fxn,xn“ (t)
forall £> 0.

By Lemma 1.3, x,, = %,,.1, which is a contradiction. Thus, we have F,_, .. (t) < Fy, 4., (t)
forall£>0and # € N, and so

Frpy (6(8)) = Fr, i, (0)
for all £ > 0 and # € N. Thus, we have
F

w1 (@ () = Frg iy (£)

forallt>0and neN.
We now show that

lim F,, . (£)=1 (2.2)
n—00
for all £ > 0. Since lim;_, o Fy, x, (t) = 1, for any € € (0,1) there exists £, > 0 such that
Fio (t0) >1—€.
Because ¢ € ®,,, there exists t; > t, such that
lim ¢"(f) = 0.
t—00
Thus, for each ¢ > 0, there exists N such that ¢"(#;) < ¢t for all n > N. Hence, we have
Fx,,,x,,+1 (t) > Fxn,xml (¢n(tl)) > Fxg,aq (tl) > Fxo,x1 (tO) >1-e€
for all n > N. Thus, lim,_, o Fy, x,,,(t) =1 for all £ > 0.
Next, we show that {x,} is a Cauchy sequence.
Let € € (0,1) be given.
Since A is of HadZi¢-type, there exists A € (0,1) such that
A'(s)>1-€¢ forallm=1,2,...,whenevers>1-A. (2.3)
Since ¢ € @, for each ¢ > 0, there exists r > ¢ such that ¢(r) < £. From (2.2) we have
nlingoFxn,xml (t - ¢(F)) =1
Thus, there exists Nj such that
Frpon (£— 0(r)) >1 -1 (2.4)

for all n > Nj.
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Since (1.4) is satisfied,

Fxn,xm (t) > Am—n (Fxn,xml (t - ¢(r))) (2.5)

holds for all m > n +1 by Lemma 1.5.
By applying (2.3) with (2.4) and (2.5),

Fypn(t)>1—€

forall m>n>Nj.
Thus, {x,} is a Cauchy sequence in X. It follows from the completeness of X that there
exists x,, € X such that

lim x,, = x,.
n— 00

If f is orbitally G-continuous, then lim,,_, » %, = fx,. Hence, x, = fx,.
Suppose that A is continuous and G is C-graph.
Then there exist a subsequence {x,, } of {x,} and an N € N such that

(., %) € E(G)

for all k > N. Since f is a generalized probabilistic G-contraction and (x,,,%.) € E(G) for
all k > N, from (2.1) with x = x,, and y = x, we have

Fxnkﬂfx* (¢(t))
= fonkfx* ((»b(t))
> min{Fxnk,x* ®), Fxnkfxnk ®), Fy, fr. (t)}

= min{Fy,, x, (8, Fr, 0 (8), F, pe, (1))

forall ¢ > 0.
By Lemma 1.4, we obtain

Fx*,fx* (¢(t))
= klifgo ianxnkJrlvfx* (¢ (t))
> lim infmin{F,, .. (), Fy, g, (6)Fr. e (0}

k—o00

= min{l, 17 Fx*,fx* (t)}

= Ly o (t)

for all £ > 0. By Lemma 1.3, x, = fx,.
Consider the path g in G from x; to x,:

q= (xo,x1,x2,...,an,x*) € E(G)'

Then the above path is in G. Hence, x, € [x0lg-
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Suppose that (x,y) € E(G) for any x,y € M.

Let x, and y, be two fixed point of f.

Then x,,y. € M. By assumption, (x,,y.) € E(G).
From (2.1) with x = x,, ¥ = ¥, we have

Firy. (6(8)) = Fp o (00))
> min{Fx*,y* (t)r Fx*fx* (t): Fy*,fy* (t)}
= min{F,,,, (£),1,1}

= Fy*,x* (t)
for all £ > 0. By Lemma 1.3, x, = y,. Thus, f has a unique fixed point. O

Example 2.1 Let X = [0, 00), and let d(x,y) = |[x — y| for all x,y € X.
Let

€o(t) (x =)

Dzt (#y),

Fx,y(t) =

for all v,y € X and ¢ > 0, where D is a distribution function defined by

0 (t<0),

D(t) =
1-e?t (t>0).

Then (X, F, A,,) is a complete Menger PM-space.
Let fx = %x for all x € X, and let

1
Elf (0§t<1),
)1 3
p)=1-1t+32 (1=<t<?),
t—2 (3 <t<o0).

Then ¢ € ®,, and ¢(¢) > %t forall £ > 0.

Further assume that X is endowed with a graph G consisting of V(G) = X and E(G) =
{(x,y) e X x X:y <x}.

Obviously, f preserves edges, and it is orbitally G-continuous. If xy = 0, then (xo,fxo) =
(0,0) € E(G).

We have

e

R =)
stlx -yl tlx—y

= Fx,y(t)
> min{Fx,y(t), Fxfx(t)’ Fyfy(t)}

v

for all (x,y) € E(G) and £ > 0.
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Thus, (2.1) is satisfied. Hence, all the conditions of Theorem 2.1 are satisfied and f has a
fixed point x, = 0 € [0]z. Furthermore, M = {0} and the fixed point is unique.

Remark 2.1 Note that in Theorem 2.1 the assumption of orbitally G-continuity can be
replaced by orbitally continuity, G-continuity or continuity.

Remark 2.2 Theorem 2.1is a generalization of Theorem 3.1in [23] to the case of a Menger
PM-space endowed with a graph.

Corollary 2.2 Let (X,F,A) be complete, and let f : X — X be a map. Suppose that the
following are satisfied:

(1) f preserves edges of G;

(2) there exists ¢ € © such that

fo,fy (¢(t)) = min{Fx,y(t): Fx,fx(t)va,fy(t)}

forall x,y € X with (x,y) € E(G) and all t > 0.
Assume that there exists xo € X such that (xo,fxo) € E(G). If either f is orbitally G-
continuous or A is a continuous t-norm and G is a C-graph, then f has a fixed point in

[%0lg-

Remark 2.3
(1) Corollary 2.2, in part, is a generalization of Theorem 3.9 and Theorem 3.15 of [13].
(2) In Corollary 2.2, let ¢(s) = ks for all s > 0, where k € (0,1). If G is a graph such that
V(G) =X and E(G) = {(x,y) € X x X : (%, y) > 1}, where o : X x X — [0,00) is a
function, then Corollary 2.2 reduces to Theorem 2.1 of [9].
(3) If G is a graph such that V(G) = X and E(G) = {(x,y) € X X X : x <y}, where < isa
partial order on X, then Corollary 2.2 become to Theorem 2.1 of [10].

Corollary 2.3 Let (X,F,A) be complete. Suppose that a map [ : X — X is generalized
probabilistic G-contraction. Assume that either f is continuous or A is a continuous t-norm
and G is a C-graph.

Then f has a fixed point in [xo]g for some xy € Q if and only if Q # ¥, where Q={x € X :
(x,fx) € E(G)}. Further if, forany x,y € Q, (x,y) € E(G) then f has a unique fixed point.

Proof Iff has a fixed pointin [x]g, say %, then (%, fx.) = (%, %) € 2 C E(G). Thus, Q Z0.

Suppose that Q # .

Then there exists xg € X such that (xo,fxo) € E(é).

We have two cases: (xq,fxo) € E(G) or (x9,fxo) € E(G™).

If (x0,/x0) € E(G), then following Theorem 2.1 f has a fixed point in [x]z.

Assume that (x, fxo) € E(G™).

Then (fxo,%0) € E(G). Since f is preserves edges of G, (f"*'xo,f"x) € E(G) for all n €
NuU{0}.

In the same way as the proof of Theorem 2.1 with condition (PM2), we deduce that f
has a fixed point in [xo]g.

Suppose that, for any %,y € Q, (x,y) € E(G).

Let x, and y, be two fixed points of f.

Then x,,y, € Q. By assumption, (x,,y.) € E(E—?).
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If (x4, 7:) € E(G), then
Fruy. (0() = min{Fy, 5, (8), Fry i, (8), Fy, . ()] = i, (8)
forall £ > 0. By Lemma 1.1, x, = ;.
Let (x4, 74) € E(G™Y), then (y,, x,) € E(G).
Then
Fyp, ($(8)) = Fy, e, (8)
for all £ > 0. Hence, y, = .. Thus, f has a unique fixed point. d

Remark 2.4 If ¢ € ® and G is a graph such that V(G) = X and E(G) = {(x,y) € X x X :
x <y}, where < is a partial order on X, then Corollary 2.3 reduces to Theorem 2.2 of [10].

In the following result, we can drop continuity of the t-norm A.
Corollary 2.4 Let (X, F, A) be complete. Suppose that a map f : X — X satisfies

forall x,y € X with (x,y) € E(G) and all t > 0, where ¢ € D,,.

Assume that there exists xo € X such that (xo,fxo) € E(G). If either f is orbitally G-
continuous or G is a C-graph, then f has a fixed point in [xo]g.

Further if (x,y) € E(G) for any x,y € M, where M = {x € X : (x,fx) € E(G)}, then f has a
unique fixed point.

Proof Let x¢ € X be such that (xo,fx¢) € E(G), and let x,, = f"x for all » € NU {0}.
Note that (2.6) to be satisfied implies that (2.1) is satisfied.

As in the proof of Theorem 2.1, x,,_1 # x,, and (x,,_1,%,,) € E(G) for all n € N and there
exists

lim x, =x, € X.

n— 00
If f is orbitally G-continuous, then lim,,_, » %, = fx,, and so x, = fx,.
Assume that G is a C-graph.
Then there exist a subsequence {x,, } of {x,} and an N € N such that

(xnkvx*) € E(G)

forall k > N.

Since ¢ € ®,,, for each ¢ > 0, there exists r > ¢ such that ¢(r) < ¢.
We have

Fx*,fx* (t)

= A(Fx*,xnkJrl (t - ¢(r))rfonk,fx* (¢(V)))
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= A(Fx*,xnkﬂ (t - ¢(r))rFxnk,x* (7"))
= A(Fx*,xnkﬂ (t - ¢(r))rFxnk,x* (t))

> A(@n, an) (2.7)

for all £ > 0, where a,, = min{F, ., ,, (¢ = ¢(r)), Fx,, . (£)}.
Since lim,,_, » a,, = 1 and A(t,t) is continuous at ¢ = 1, lim,_, o A(a,,a,) = A(1,1) = 1.
Hence, from (2.7) we have F;, 4, (t) = 1 for all £ > 0, and so x, = fx,. (N

Remark 2.5 Corollary 2.4 is a generalization of Theorem 3.1 in [23] to the case of a
Menger PM-space endowed with a graph.

Theorem 2.5 Let (X,F,A) be complete such that A is continuous. Let f,h: X — X be
maps, and let G be a directed graph satisfying V(G) = h(X) and {(hx, hx) : x € X} C E(G).
Suppose that the following are satisfied:

(1) £X) Ch(X);

(2) h(X) is closed,;

(3) (hx, hy) € E(G) implies (fx,fy) € E(G);

(4) there exists xy € X such that (hxy,fxo) € E(G);

(5) there exists ¢ € ®,, such that

fo,fy (¢(t)) = min{th,hy(t)r thfx(t)r thfy(t)} (2.8)

forall x,y € X with (hx, hy) € E(G) and all t > 0;
(6) if {xn} is a sequence in X such that (hx,, hxy.1) € E(G) for all n € NU {0} and
limy,—, o0 B,y = hu for some u € X, then (hx,, hu) € E(G) for all n € NU {0}.
Then f and h have a coincidence point in X. Further if f and h commute at their coinci-
dence points and (hu, hhu) € E(G), then f and h have a common fixed point in X.

Proof By Lemma 1.7, there exists Y C X such that 4#(Y) = 4(X) and & : Y — X is one-to-
one. Define a mapping U : h(Y) — h(Y) by U(hx) = fx. Since h: Y — X is one-to-one, U
is well defined.

By (3), (hx, hy) € E(G) implies (U(hx), U(hy)) € E(G).

By (4), (hxo, U(hxo)) € E(G) for some xp € X. We have

Fumm,um) (@)
= Fpefy (¢(t))
= min{th,hy(t); th,fx(t); thfy(t)}
= min{ Fpuy ()s Fps () () Fy i) (8) }
for all hx, hy € h(Y) with (hx, hy) € E(G). Since h(Y) = h(X) is complete, by applying Theo-
rem 2.1, there exists u € X such that U(hu) = hu, and so hu = fu. Hence, u is a coincidence
point of f and 4.

Suppose that f and # commute at their coincidence points and (hu, hhu) € E(G). Let
w = hu = fu. Then fw = fhu = hfu = hw, and (hu, hw) = (hu, hhu) € E(G).



Cho Fixed Point Theory and Applications (2016) 2016:50 Page 16 of 21

Applying inequality (2.8) with x = &, y = w, we have

Fw,fw (¢(t))
= Ffufw (¢(t))
> min{Fhu,hw(t)¢ Fhu,fu(t)r Fhwfw(t)}

= min{Fwa(t), Fw,w(t))FfoW(t)}

= min{F,5,(£),1,1}
= Fw,w(t)
forall £ > 0.
By Lemma 1.2, w = fw. Hence w = fw = hw. Thus, w is a common fixed point of f
and /. O

Remark 2.6 Theorem 2.5 is a generalization of Theorem 3.4 of [3]. If we have ¢(s) = ks
for all s > 0, where k € (0,1), and V(G) = X and E(G) = {(x,y) : x < y}, where < is a partial
order on X, then Theorem 2.5 reduces to Theorem 3.4 of [3].

Theorem 2.6 Let (X, F, A) be complete. Suppose that maps fy,fi : X — X satisfy the fol-
lowing:

Ffoxfoy(¢(t)) > Fx,y(t)7 (29)

where ¢ € O, and

thﬁy(t) = min{Fx,y(t)’ Fxfx(t)¢ Fyfy(t)} (2.10)

forall x,y € X with (x,y) € E(G) and all t > 0.

Suppose that f preserves edges, and assume that there exists xo € X such that (xo,fxo) €
E(G), where f = fofi. If either f is orbitally G-continuous or A is a continuous t-norm and
G is a C-graph, then f has a fixed point in [xo]g.

Further if (x,y) € E(G) for any x,y € M, where M = {x € X : (x,fx) € E(G)}, then fy and fi
have a common fixed point whenever f, is commutative with fi.

Proof From (2.9) and (2.10) we have

F}‘xfy (¢(t)) = min{Fx,y(t); Fx,fx(t)r Fy,fy(t)}

for all x,y € X with (x,y) € E(G) and all £ > 0. By Theorem 2.1, f has a fixed point in [x¢]g,
say Xs.

Suppose that (x,y) € E(G) for any x,y € M.

Then from Theorem 2.1 f has a unique fixed point.

Since fy is commutative with i and fx, = x., ffoxs = fo(fifoxs) = fo(fofixs) = fofxe = foxs.
Similarly, we obtain ffix, = fix,. From the uniqueness of fixed point of f, we have x, =
Jox. = fix.. O
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_t

Example 2.2 Let X = [0,00), and let Fy,(¢) = e

(x#y),

(otherwise).

d(x,y) = max{x, y}

Then (X, F, A,,) is a complete Menger PM-space.

Let
%t (0<t<l),
p)=1-1t+2 (1=<t<?d),
2 3
t—g (§<t<00).

Then ¢ € ®,, and ¢(¢t) > %t forall £ > 0.

forallx,y € X and all ¢ > 0, where
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Further assume that X is endowed with a graph G consisting of V(G) = X and E(G) =

{(x,9) e X x X :y <x}.
Obviously, G is a C-graph.

Let fo : X — X be a map defined by fox = %xforallxzo, and define amap f; : X — X by

fam mw (0=x=<2)
ﬁx (x>2).
Then
= (0<x<2)
_ _ 8(1+x) - =0
fe=fifix=1{"
% (x>2).

Obviously, f preserves edges.
Let (x,y) € E(G).
Then y < x, and we obtain

o(2)
o(t) +d(3%39)

Ffoxfoy(¢(t))

= = Fx t
t + max{x,y} o(0)

for all £ > 0. Hence, (2.9) is satisfied.
We consider the following three cases:
Casel.0<y<x<2:

t

Pvflx,ﬁy(t) = y
t+d(55 705)

t t
> —
t+x

t+

4(1+x)
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t t
Ct+max{x,y) t+d(xy)

> min{Fx,y(t);Fxfx(t)’Fyfy(t)}

Fyy(2)

forallt>0.
Case2.2<y<x:

O p—
A v a(E, )
t t t
= xZ—=4
t+35 ~ t+x ¢+ max{x,y}
t
=——=F,,(t
t+dx,y) =)

> min{Fx,y(t),Fxfx(t)’Fyfy(t)}

forall ¢ > 0.
Case3.0<y<2and2<x:

Fres® d

fixfiy\t) =
t+d(35, 4(1{4))

t t t

= xz—:—
t+35 ~ t+x £+ max{xy}
=——=F (¢
t+d(x,y) =)

> min{Fy,y(£), Fyfu(t), Fyp(0)}

forall £ > 0.

Thus, (2.10) is satisfied.

For x¢ = 4, (%o, fxo) = (4, %) € E(G). Hence, all the conditions of Theorem 2.6 are satisfied
and f has a fixed point x, = 0 € [x¢]z.

Corollary 2.7 Let (X, F, A) be complete. Suppose that maps fy,fi : X — X satisfy the fol-
lowing:

F}Oxfoy(¢(t)) = Fx,y(t)’ (2'11)

where ¢ € ©,, and

th,fly(t) = Fx,y(t) (212)

forall x,y € X with (x,y) € E(G) and all ¢ > 0.

Suppose that f preserves edges, and assume that there exists xo € X such that (xo,fxo) €
E(G), where f = fofi. If f is orbitally G-continuous or G is a C-graph, then f has a fixed
point in [xo]g.

Further if (x,y) € E(G) for any x,y € M, where M = {x € X : (x,fx) € E(G)}, then fy and f;
have a common fixed point whenever f, is commutative with f;.
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Proof From (2.11) and (2.12) we have
Fropy(9(2)) = Fry (1)

for all x,y € X with (x,y) € E(G) and all £ > 0. By Corollary 2.4, f has a fixed point in [xo]g,
say X.
Suppose that (x,y) € E(G) for any x,y € M.
Then from Corollary 2.4 f has a unique fixed point.
Since fy is commutative with f, as in the proof of Theorem 2.6 we have x, = fox, =
fixy. O

Remark 2.7 Corollary 2.7 is a generalization of Corollary 2.1 of [23] to the case of Menger
PM-space endowed with a graph.

Corollary 2.8 Let (X, d) be a complete metric space, and let G = (V(G), E(G)) be a directed
graph satisfying V(G) = X and Q@ C E(G). Let f : X — X be a map. Suppose that the follow-
ing are satisfied:

(1) (x,y) € E(G) implies (fx,fy) € E(G);

(2) there exists ¢ € ®,, such that

d(fx.fy)
< ¢(max{d(x,),d(x.fx),d(y.f)}) (213)

for all x,y € X with (x,y) € E(G), where ¢ is nondecreasing;
(3) there exists xg € X such that (xo,fxo) € E(G);
(4a) f is continuous, or
(4b) if {x,} is a sequence in X such that limy,_, o0 %, = x4 € X and (x,,%441) € E(G) for all

n € N, then there exists a subsequence {x,, } of {x,} such that (x,,,x.) € E(G) for all
keN.

Then f has a fixed point in [x0]g.

Proof Suppose that equality holds in (2.13) and x # fx for all x € X.
Let xg € X be fixed. Then (xg, %) € E(G), and from (2.13) we have

0= d(fxo,fxo)
= ¢ (max {d(xo, %0), (o, fo), (o, fx0)})
= ¢(d(x0,fx0)),

which implies d(xo,fxo) = 0 and so xy = fxo, which is a contradiction.

Thus, if equality holds in (2.13), then f has a fixed point.

Assume that equality is not satisfied in (2.13).

Let (X, F, A,,) be the induced Menger PM-space by (X, d).

By Lemma 1.6, (X, F, A,,) is complete. By Remark 1.3, (4a) implies f is continuous in
(X, F, A), and (4b) implies G is C-graph.

We show that (2.1) is satisfied.



Cho Fixed Point Theory and Applications (2016) 2016:50 Page 20 of 21

We know that the values of each distribution function F,,(-), u,v € X, in the induced
Menger PM-space only can equal 0 or 1. Hence, without loss of generality, we may assume
that

min{Fy(£), Fxfu(6), Fy ()} = 1
for all x,y € E(G) and ¢ > 0. Then
t>dx,y), t>d(x,fx) and t>d(y,fy).
Thus,

t> max{d(x,y),d(x,fx), d()’rf)’)}-

Since ¢ is nondecreasing,

¢ (max{d(x,y),d(x,fx),d(.y)}) < o(t).

By assumption, we have

d(fx, fy) < ¢(2).

Hence, ¢(£) — d(fx, fy) > 0. So Fp.5,(¢(£)) = 1. Thus we have

fofy (¢(t)) = min{Fx,y(t)xFx,fx(t):Fyfy(t)}

for all x,y € X with (x,y) € E(G) and all £ > 0.
Hence, (2.1) is satisfied. By Theorem 2.1 and Remark 2.1, f has a fixed point in
[%0]z- 0

Corollary 2.9 Let (X,d) be a complete metric space, and let G = (V(G), E(G)) be a directed
graph satisfying V(G) = X and Q@ C E(G). Let f : X — X be a map.

Suppose that the following are satisfied:

(1) (x,y) € E(G) implies (fx,fy) € E(G);

(2) there exists ¢ € ®,, such that

d(fx, fy) < ¢(d(x,))

forall x,y € X with (x,y) € E(G), where ¢ is nondecreasing;

(3) there exists xo € X such that (xo,fxo) € E(G);

(4) either f is continuous or if {x,} is a sequence in X such that lim,_, « x, = x, € X and
(% %n41) € E(G) for all n € N, then there exists a subsequence {x,, } of {x,,} such that
(%, %4) € E(G) for all k e N.

Then f has a fixed point in [xo]g.

Remark 2.8 Corollary 2.9 is a generalization of the results of [5]. If we have a graph G
such that V(G) = X and E(G) = {(x,y) € X x X : x < y}, where < is a partial order on X,
and ¢(s) = ks for all s > 0, where k € [0,1), then Corollary 2.9 reduces to Theorem 2.1 and
Theorem 2.2 of [5].
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