260 research outputs found

    Theory of sound attenuation in glasses: The role of thermal vibrations

    Get PDF
    Sound attenuation and internal friction coefficients are calculated for a realistic model of amorphous silicon. It is found that, contrary to previous views, thermal vibrations can induce sound attenuation at ultrasonic and hypersonic frequencies that is of the same order or even larger than in crystals. The reason is the internal-strain induced anomalously large Gr\"uneisen parameters of the low-frequency resonant modes.Comment: 8 pages, 3 figures; to appear in PR

    Thermal Properties of Graphene, Carbon Nanotubes and Nanostructured Carbon Materials

    Full text link
    Recent years witnessed a rapid growth of interest of scientific and engineering communities to thermal properties of materials. Carbon allotropes and derivatives occupy a unique place in terms of their ability to conduct heat. The room-temperature thermal conductivity of carbon materials span an extraordinary large range - of over five orders of magnitude - from the lowest in amorphous carbons to the highest in graphene and carbon nanotubes. I review thermal and thermoelectric properties of carbon materials focusing on recent results for graphene, carbon nanotubes and nanostructured carbon materials with different degrees of disorder. A special attention is given to the unusual size dependence of heat conduction in two-dimensional crystals and, specifically, in graphene. I also describe prospects of applications of graphene and carbon materials for thermal management of electronics.Comment: Review Paper; 37 manuscript pages; 4 figures and 2 boxe

    Lipoteichoic Acid Induces Unique Inflammatory Responses when Compared to Other Toll-Like Receptor 2 Ligands

    Get PDF
    Toll-like receptors (TLRs) recognize evolutionarily-conserved molecular patterns originating from invading microbes. In this study, we were interested in determining if microbial ligands, which use distinct TLR2-containing receptor complexes, represent unique signals to the cell and can thereby stimulate unique cellular responses. Using the TLR2 ligands, R-FSL1, S-FSL1, Pam2CSK4, Pam3CSK4, and lipoteichoic acid (LTA), we demonstrate that these ligands activate NF-κB and MAP Kinase pathways with ligand-specific differential kinetics in murine macrophages. Most strikingly, LTA stimulation of these pathways was substantially delayed when compared with the other TLR2 ligands. These kinetics differences were associated with a delay in the LTA-induced expression of a subset of genes as compared with another TLR2 ligand, R-FSL1. However, this did not translate to overall differences in gene expression patterns four hours following stimulation with different TLR2 ligands. We extended this study to evaluate the in vivo responses to distinct TLR2 ligands using a murine model of acute inflammation, which employs intravital microscopy to monitor leukocyte recruitment into the cremaster muscle. We found that, although R-FSL1, S-FSL1, Pam2CSK4, and Pam3CSK4 were all able to stimulate robust leukocyte recruitment in vivo, LTA remained functionally inert in this in vivo model. Therefore distinct TLR2 ligands elicit unique cellular responses, as evidenced by differences in the kinetic profiles of signaling and gene expression responses in vitro, as well as the physiologically relevant differences in the in vivo responses to these ligands

    Bacillus anthracis Peptidoglycan Stimulates an Inflammatory Response in Monocytes through the p38 Mitogen-Activated Protein Kinase Pathway

    Get PDF
    We hypothesized that the peptidoglycan component of B. anthracis may play a critical role in morbidity and mortality associated with inhalation anthrax. To explore this issue, we purified the peptidoglycan component of the bacterial cell wall and studied the response of human peripheral blood cells. The purified B. anthracis peptidoglycan was free of non-covalently bound protein but contained a complex set of amino acids probably arising from the stem peptide. The peptidoglycan contained a polysaccharide that was removed by mild acid treatment, and the biological activity remained with the peptidoglycan and not the polysaccharide. The biological activity of the peptidoglycan was sensitive to lysozyme but not other hydrolytic enzymes, showing that the activity resides in the peptidoglycan component and not bacterial DNA, RNA or protein. B. anthracis peptidoglycan stimulated monocytes to produce primarily TNFα; neutrophils and lymphocytes did not respond. Peptidoglycan stimulated monocyte p38 mitogen-activated protein kinase and p38 activity was required for TNFα production by the cells. We conclude that peptidoglycan in B. anthracis is biologically active, that it stimulates a proinflammatory response in monocytes, and uses the p38 kinase signal transduction pathway to do so. Given the high bacterial burden in pulmonary anthrax, these findings suggest that the inflammatory events associated with peptidoglycan may play an important role in anthrax pathogenesis

    The Prevalence of Immunologic Injury in Renal Allograft Recipients with De Novo Proteinuria

    Get PDF
    Post-transplant proteinuria is a common complication after renal transplantation; it is associated with reduced graft and recipient survival. However, the prevalence of histological causes has been reported with considerable variation. A clinico-pathological re-evaluation of post-transplant proteinuria is necessary, especially after dismissal of the term “chronic allograft nephropathy,” which had been considered to be an important cause of proteinuria. Moreover, urinary protein can promote interstitial inflammation in native kidney, whether this occurs in renal allograft remains unknown. Factors that affect the graft outcome in patients with proteinuria also remain unclear. Here we collected 98 cases of renal allograft recipients who developed proteinuria after transplant, histological features were characterized using Banff scoring system. Cox proportional hazard regression models were used for graft survival predictors. We found that transplant glomerulopathy was the leading (40.8%) cause of post-transplant proteinuria. Immunological causes, including transplant glomerulopathy, acute rejection, and chronic rejection accounted for the majority of all pathological causes of proteinuria. Nevertheless, almost all patients that developed proteinuria had immunological lesions in the graft, especially for interstitial inflammation. Intraglomerular C3 deposition was unexpectedly correlated with the severity of proteinuria. Moreover, the severity of interstitial inflammation was an independent risk factor for graft loss, while high level of hemoglobin was a protective factor for graft survival. This study revealed a predominance of immunological parameters in renal allografts with post-transplant proteinuria. These parameters not only correlate with the severity of proteinuria, but also with the outcome of the graft

    Exploring the mechanisms of renoprotection against progressive glomerulosclerosis

    Get PDF
    In this review, I introduce the strategy developed by our laboratory to explore the mechanisms of renoprotection against progressive glomerulosclerosis leading to renal death. First, I describe the experimental rat model in which disturbances of vascular regeneration and glomerular hemodynamics lead to irreversible glomerulosclerosis. Second, I discuss the possible mechanisms determining the progression of glomerulosclerosis and introduce a new imaging system based on intravital confocal laser scanning microscopy. Third, I provide an in-depth review of the regulatory glomerular hemodynamics at the cellular and molecular levels while focusing on the pivotal role of Ca2+-dependent gap junctional intercellular communication in coordinating the behavior of mesangial cells. Last, I show that local delivery of renoprotective agents, in combination with diagnostic imaging of the renal microvasculature, allows the evaluation of the therapeutic effects of angiotensin II receptor and cyclooxygenase activity local blockade on the progression of glomerulosclerosis, which would otherwise lead to renal death
    corecore