303 research outputs found

    Operational Entanglement of Symmetry-Protected Topological Edge States

    Full text link
    We use an entanglement measure that respects the superselection of particle number to study the non-local properties of symmetry-protected topological edge states. Considering half-filled M-leg Su-Schrieffer-Heeger (SSH) ladders as an example, we show that the topological properties and the operational entanglement extractable from the boundaries are intimately connected. Topological phases with at least two filled edge states have the potential to realize genuine, non-bipartite, many-body entanglement which can be transferred to a quantum register. The entanglement is extractable when the filled edge states are sufficiently localized on the lattice sites controlled by the users. We show, furthermore, that the onset of entanglement between the edges can be inferred from local particle number spectroscopy alone and present an experimental protocol to study the breaking of Bell's inequality.Comment: Final version, minor change

    Entanglement and particle fluctuations of one-dimensional chiral topological insulators

    Full text link
    We consider the topological protection of entanglement and particle fluctuations for a general one-dimensional chiral topological insulator with winding number I\mathcal{I}. We prove, in particular, that when the periodic system is divided spatially into two equal halves, the single-particle entanglement spectrum has 2I2|\mathcal{I}| protected eigenvalues at 1/21/2. Therefore the number fluctuations are bounded from below by ΔN2I/2\Delta N^2\geq |\mathcal{I}|/2 and the entanglement entropy by S2Iln2S\geq 2|\mathcal{I}|\ln 2. We note that our results are obtained by applying directly an index theorem to the microscopic model and do not rely on an equivalence to a continuum model or a bulk-boundary correspondence for a slow varying boundary.Comment: 6 pages, published versio

    Circulating tumour cell clusters: Insights into tumour dissemination and metastasis.

    Full text link
    INTRODUCTION:Metastasis results in more than 90% of cancer related deaths globally. The process is thought to be facilitated by metastatic precursor cells, commonly termed circulating tumour cells (CTCs). CTCs can exist as single cells or cell clusters and travel through the lymphovasculature to distant organs where they can form overt metastasis. Areas covered: Studies have highlighted that CTC clusters, which may be homotypic or heterotypic in composition, have a higher metastatic potential compared to single CTCs. The characterisation of CTC clusters is becoming important as heterotypic clusters can provide a mechanism for immune evasion. This review summarises the latest advances in CTC cluster mediated metastasis and clinical significance. Expert Opinion: Comprehensive characterisation of CTC clusters is needed to understand the cell types and interactions within clusters, in order to identify ways in which to reduce CTC cluster mediated metastasis. The role of CTC clusters in prognosticating disease progression needs to be determined by documenting CTC clusters from the time of diagnosis over the course of therapy

    The evolving landscape of predictive biomarkers in immuno-oncology with a focus on spatial technologies.

    Full text link
    Immunotherapies have shown long-lasting and unparalleled responses for cancer patients compared to conventional therapy. However, they seem to only be effective in a subset of patients. Therefore, it has become evident that a greater understanding of the tumor microenvironment (TME) is required to understand the nuances which may be at play for a favorable outcome to therapy. The immune contexture of the TME is an important factor in dictating how well a tumor may respond to immune checkpoint inhibitors. While traditional immunohistochemistry techniques allow for the profiling of cells in the tumor, this is often lost when tumors are analysed using bulk tissue genomic approaches. Moreover, the actual cellular proportions, cellular heterogeneity and deeper spatial distribution are lacking in characterisation. Advances in tissue interrogation technologies have given rise to spatially resolved characterisation of the TME. This review aims to provide an overview of the current methodologies that are used to profile the TME, which may provide insights into the immunopathology associated with a favorable outcome to immunotherapy

    Hierarchical spin-orbital polarisation of a giant Rashba system

    Get PDF
    The Rashba effect is one of the most striking manifestations of spin-orbit coupling in solids, and provides a cornerstone for the burgeoning field of semiconductor spintronics. It is typically assumed to manifest as a momentum-dependent splitting of a single initially spin-degenerate band into two branches with opposite spin polarisation. Here, combining polarisation-dependent and resonant angle-resolved photoemission measurements with density-functional theory calculations, we show that the two "spin-split" branches of the model giant Rashba system BiTeI additionally develop disparate orbital textures, each of which is coupled to a distinct spin configuration. This necessitates a re-interpretation of spin splitting in Rashba-like systems, and opens new possibilities for controlling spin polarisation through the orbital sector.Comment: 11 pages including supplemental figures, accepted for publication at Science Advance

    Fluorescence and phosphorescence anisotropy from oriented films of thermally activated delayed fluorescence emitters.

    Get PDF
    Anisotropy within three TADF materials has been observed using steady-state fluorescence polarisation. This technique has allowed for the observation of differences in polarisation within dilute solution, and both un-stretched and stretched films; the latter producing highly aligned molecules within the sample. Using these aligned films differences in anisotropy can be observed between the emission from the 1LE and 1CT states and upon exciting different absorption bands. Furthermore, polarisation observed from time-resolved measurements, highlights the strong vibronic coupling between charge-transfer and local triplet states

    Electron correlation effects in electron-hole recombination in organic light-emitting diodes

    Get PDF
    We develop a general theory of electron--hole recombination in organic light emitting diodes that leads to formation of emissive singlet excitons and nonemissive triplet excitons. We briefly review other existing theories and show how our approach is substantively different from these theories. Using an exact time-dependent approach to the interchain/intermolecular charge-transfer within a long-range interacting model we find that, (i) the relative yield of the singlet exciton in polymers is considerably larger than the 25% predicted from statistical considerations, (ii) the singlet exciton yield increases with chain length in oligomers, and, (iii) in small molecules containing nitrogen heteroatoms, the relative yield of the singlet exciton is considerably smaller and may be even close to 25%. The above results are independent of whether or not the bond-charge repulsion, X_perp, is included in the interchain part of the Hamiltonian for the two-chain system. The larger (smaller) yield of the singlet (triplet) exciton in carbon-based long-chain polymers is a consequence of both its ionic (covalent) nature and smaller (larger) binding energy. In nitrogen containing monomers, wavefunctions are closer to the noninteracting limit, and this decreases (increases) the relative yield of the singlet (triplet) exciton. Our results are in qualitative agreement with electroluminescence experiments involving both molecular and polymeric light emitters. The time-dependent approach developed here for describing intermolecular charge-transfer processes is completely general and may be applied to many other such processes.Comment: 19 pages, 11 figure

    Correlated theory of triplet photoinduced absorption in phenylene-vinylene chains

    Full text link
    In this paper we present results of large-scale correlated calculations of triplet photoinduced absorption (PA) spectrum of oligomers of poly-(para)phenylenevinylene (PPV) containing up to five phenyl rings. In particular, the high-energy features in the triplet PA spectrum of oligo-PPVs are the focus of this study, which, so far, have not been investigated theoretically, or experimentally. The calculations were performed using the Pariser-Parr-Pople (PPP) model Hamiltonian, and many-body effects were taken into account by means of multi-reference singles-doubles configuration interaction procedure (MRSDCI), without neglecting any molecular orbitals. The computed triplet PA spectrum of oligo-PPVs exhibits rich structure consisting of alternating peaks of high and low intensities. The predicted higher energy features of the triplet spectrum can be tested in future experiments. Additionally, theoretical estimates of exciton binding energy are also presented.Comment: To appear in Phys. Rev.
    corecore