24 research outputs found

    Projection effects in galaxy cluster samples: insights from X-ray redshifts

    Full text link
    Up to now, the largest sample of galaxy clusters selected in X-rays comes from the ROSAT All-Sky Survey (RASS). Although there have been many interesting clusters discovered with the RASS data, the broad point spread function (PSF) of the ROSAT satellite limits the amount of spatial information of the detected objects. This leads to the discovery of new cluster features when a re-observation is performed with higher resolution X-ray satellites. Here we present the results from XMM-Newton observations of three clusters: RXCJ2306.6-1319, ZwCl1665 and RXCJ0034.6-0208, for which the observations reveal a double or triple system of extended components. These clusters belong to the extremely expanded HIghest X-ray FLUx Galaxy Cluster Sample (eeHIFLUGCS), which is a flux-limited cluster sample (fX,500≥5×10−12f_\textrm{X,500}\geq 5\times10^{-12} erg s−1^{-1} cm−2^{-2} in the 0.1−2.40.1-2.4 keV energy band). For each structure in each cluster, we determine the redshift with the X-ray spectrum and find that the components are not part of the same cluster. This is confirmed by an optical spectroscopic analysis of the galaxy members. Therefore, the total number of clusters is actually 7 and not 3. We derive global cluster properties of each extended component. We compare the measured properties to lower-redshift group samples, and find a good agreement. Our flux measurements reveal that only one component of the ZwCl1665 cluster has a flux above the eeHIFLUGCS limit, while the other clusters will no longer be part of the sample. These examples demonstrate that cluster-cluster projections can bias X-ray cluster catalogues and that with high-resolution X-ray follow-up this bias can be corrected

    X-ray studies of the Abell 3158 galaxy cluster with eROSITA

    Get PDF
    Context. The most nearby clusters are the best places for studying physical and enrichment effects in the faint cluster outskirts. The Abell 3158 cluster (A3158), located at z = 0.059, is quite extended with a characteristic radius r200_{200} = 23.95 arcmin. The metal distribution in the outskirts of this cluster has previously been studied with XMM-Newton. In 2019, A3158 was observed as a calibration target in a pointed observation with the eROSITA telescope on board the Spektrum-Roentgen-Gamma mission. Bright large clusters, such as A3158, are ideal for studying the metal distribution in the cluster outskirts, along with the temperature profile and morphology. With the deeper observation time of the eROSITA telescope, these properties can now be studied in greater detail and at larger radii. Furthermore, bright nearby clusters are ideal X-ray instrumental cross-calibration targets as they cover a large fraction of the detector and do not vary in time. Aims. We first compare the temperature, metal abundance, and normalisation profiles of the cluster from eROSITA with previous XMM-Newton and Chandra data. Following this calibration work, we investigate the temperature and metallicity of the cluster out to almost r200_{200}, measure the galaxy velocity dispersion, and determine the cluster mass. Furthermore, we search for infalling clumps and background clusters in the field. Methods. We determined 1D temperature, abundance, and normalisation profiles from both eROSITA and XMM-Newton data as well as 2D maps of temperature and metal abundance distribution from eROSITA data. The velocity dispersion was determined and the cluster mass was calculated from the mass–velocity dispersion (M200_{200}−συ_{υ}) relation. Galaxy density maps were created to enable a better understanding of the structure of the cluster and the outskirts. Results. The overall (i.e. in the range 0.2−0.5r500_{500}) temperature was measured to be 5.158 ± 0.038 keV. The temperature, abundance, and normalisation profiles of eROSITA all agree to within a confidence level of about 10% with those we determined using XMM-Newton and Chandra data, and they are also consistent with the profiles published previously by the X-COP project. The cluster morphology and surface brightness profile of cluster Abell 3158 appear to be regular at a first glance. Clusters that have such profiles typically are relaxed and host cool cores. However, the temperature profile and map show that the cluster lacks a cool core, as was noted before. Instead, an off-centre cool clump lies to the west of the central cluster region, as reported previously. These are indications that the cluster may be undergoing some sloshing and merger activity. Furthermore, there is a bow-shaped edge near the location of the cool gas clump west of the cluster centre. Farther out west of the X-ray images of A3158, an extension of gas is detected. This larger-scale extension is described here for the first time. The gas metallicity (~0.2 solar) measured in the outskirts (»r500_{500}) is consistent with an early-enrichment scenario. The velocity dispersion of the cluster member galaxies is measured to be 1058 ± 41 kms−1^{-1} based on spectroscopic redshifts of 365 cluster member galaxies and the total mass is determined as M200_{200},c = 1.38 ± 0.25 × 1015^{15} M⊙. The mass estimate based on the X-ray temperature is significantly lower at M200 = 6.20 ± 0.75 × 1014^{14} M⊙, providing further indications that merger activity boosts the velocity dispersion and/or biases the temperature low. An extended X-ray source located south of the field of view also coincides with a galaxy overdensity with spectroscopic redshifts in the range 0.05 < z < 0.07. This source further supports the idea that the cluster is undergoing merger activity. Another extended source located north of the field of view is detected in X-rays and coincides with an overdensity of galaxies with spectroscopic redshifts in the range of 0.070 < z < 0.077. This is likely a background cluster that is not directly related to A3158. Additionally, the known South Pole Telescope cluster SPT-CL J0342-5354 at z = 0. 53 was detected

    X-Ray Studies of the Abell 3158 Galaxy Cluster with eROSITA

    Get PDF
    The most nearby clusters are the best places to study physical and enrichment effects in the faint cluster outskirts. A3158 located at z=0.059 is quite extended with a characteristic radius r200_{200}=23.95 arcmin. In 2019, A3158 was observed as a calibration target in a pointed observation with the eROSITA telescope onboard the SRG mission. We determined 1d temperature, abundance and normalisation profiles from eROSITA and XMM-Newton and Chandra data as well as 2d maps of temperature distribution from eROSITA data. The velocity dispersion was determined and the cluster mass was calculated. The overall temperature was measured to be 4.725±\pm 0.035 keV. The profiles of eROSITA all agree on a ~10% level with those determined with XMM-Newton and Chandra data. From the temperature map we see that the cluster lacks a cool core, as noted before. The presence of a previously detected off-centre cool clump West of the central cluster region is observed. Furthermore there is a bow shaped edge near the location of the cool gas clump West of the cluster centre. An extension of gas is detected for the first time further out in the West. The velocity dispersion of the cluster was measured to be 1058±\pm41 km s−1^{-1}. The total mass was determined as M200M_{200}=1.38±\pm 0.25x1015^{15} M⊙M_{\odot}. The mass estimate from the M-T relation is significantly lower at M200_{200}=5.09±\pm 0.59x1014M⊙^{14}M_{\odot}. An extended X-ray source located South of the cluster also coincides with a galaxy overdensity with redshifts in the range 0.05<z<0.07. These are indications that the cluster may be undergoing merger activity. Another extended source located North of the cluster is detected in X-rays and coincides with an overdensity of galaxies with redshifts in the range of 0.070<z<0.077. This is likely a background cluster not related to A3158. Additionally a known SPT cluster at z=0.53 was detected.Comment: 14 pages, 17 figures in the main text, and 3 figures in the appendix. Accepted by A&A for the Special Issue: The Early Data Release of eROSITA and Mikhail Pavlinsky ART-XC on the SRG Missio

    EROSITA Spectro-Imaging Analysis of the Abell 3408 Galaxy Cluster

    Get PDF
    The X-ray telescope eROSITA onboard the newly launched SRG mission serendipitously observed the galaxy cluster A3408 (z=0.0420z=0.0420) during the PV observation of the AGN 1H0707-495. Despite its brightness and large extent, it has not been observed by any modern X-ray observatory. A neighbouring cluster in NW direction, A3407 (z=0.0428z=0.0428), appears to be close at least in projection (∼1.7\sim 1.7 Mpc). This cluster pair could be in a pre- or post-merger state. We perform a detailed X-ray analysis of A3408. We construct particle background subtracted and exposure corrected images and surface brightness profiles in different sectors. The spectral analysis is performed out to 1.4r5001.4r_{500}. Additionally, a temperature map is presented depicting the distribution of the ICM temperature. Furthermore, we make use of data from the RASS to estimate some bulk properties of A3408 and A3407, using the growth curve analysis method and scaling relations. The imaging analysis shows a complex morphology of A3408 with a strong elongation in SE-NW direction. This is quantified by comparing the surface brightness profiles of the NW, SW, SE and NE directions, where the NW and SE directions show a significantly higher surface brightness compared to the other directions. We determine a gas temperature kBT500=(2.23±0.09){\rm k_B}T_{500}=(2.23\pm0.09) keV. The T-profile reveals a hot core within 2′2' of the emission peak, kBT=3.04−0.25+0.29{\rm k_B}T=3.04^{+0.29}_{-0.25} keV. Employing a M-T relation, we obtain M500=(9.27±0.75)×1013M⊙M_{500}=(9.27\pm0.75)\times 10^{13}M_{\odot} iteratively. The r200r_{200} of A3407 and A3408 are found to overlap in projection which makes ongoing interactions plausible. The 2d T-map reveals higher temperatures in W than in E direction. A3407 and A3408 are likely in a pre-merger state, affecting the ICM properties, i.e., increased temperatures in the direction of A3407 indicate adiabatic compression or shocks due to the interaction.Comment: 10 pages, 7 figures (main text), 2 figures (appendix). Submitted to A&A for the Special Issue: The Early Data Release of eROSITA and Mikhail Pavlinsky ART-XC on the SRG Missio
    corecore