178 research outputs found

    Origin of Hysteresis in a Proximity Josephson Junction

    Get PDF
    We investigate hysteresis in the transport properties of Superconductor - Normal metal - Superconductor (S-N-S) junctions at low temperatures by measuring directly the electron temperature in the normal metal. Our results demonstrate unambiguously that the hysteresis results from an increase of the normal metal electron temperature once the junction switches to the resistive state. In our geometry, the electron temperature increase is governed by the thermal resistance of the superconducting electrodes of the junction

    An Evaluation of Presence and Source of Fecal Contamination at Golden Gardens Park

    Get PDF
    Golden Gardens is an 87.8 acre Park in Seattle, WA that has come under recent scrutiny over concerns about water quality in the streams and at the beach. Located just north of Shillshole marina in Seattle it has a swimming beach which is 1439 m in length, as well as a forested region directly east of the beach on a relatively steep hill with several drainages flowing into the sound. The purpose of this study was to assess the levels of indicator bacteria in beach water and in the fresh water drainages and to determine if the bacterial contamination is related to human or animal inputs. Specifically, we were interested in determining if the off-leash area for dogs, located on the hill above the beach, was contributing to the contamination. Water was collected five times from June-August 2010 at 4 locations at two depths along the beach and as many as 20 locations in the drainages on the hill. One-hundred ml aliquots of water were analyzed in duplicate for each site sampled via membrane filtration for fecal coliforms, and enterococci. DNA from Enterococci isolates were amplified by PCR targeting the esp gene in enterococci and DNA extracted from 200ml of fresh water was amplified for the 16S rRNA gene in Bacteroides to determine the source of contamination. Fecal coliform levels for marine beach water at Golden Gardens typically meet WA State bacteriological criteria for secondary contact recreation. The stream water frequently exceeded the USEPA recommended level of 33 enteroccoci per 100ml. Preliminary PCR results showed that two of 24 samples from one sampling period were positive for human specific Enterococcus. PCR analysis for human specific Enterococcus and for human and canine specific Bacteroides is still underway for the other sampling period

    Corporate Political Donations: Investment or Agency?

    Get PDF
    This is the published version, also available from http://dx.doi.org/10.1515/1469-3569.1391 .We examine corporate donations to political candidates for federal offices in the United States from 1991 to 2004. Firms that donate have operating characteristics consistent with the existence of a free cash flow problem, and donations are negatively correlated with returns. A $10,000 increase in donations is associated with a reduction in annual excess returns of 7.4 basis points. Worse corporate governance is associated with larger donations. Even after controlling for corporate governance, donations are associated with lower returns. Donating firms engage in more acquisitions and their acquisitions have significantly lower cumulative abnormal announcement returns than non-donating firms. We find virtually no support for the hypothesis that donations represent an investment in political capital. Instead, political donations are symptomatic of agency problems within firms. Our results are particularly useful in light of the Citizens United ruling, which is likely to greatly increase the use of corporate funds for political donations

    Primary thermometry in the intermediate Coulomb blockade regime

    Full text link
    We investigate Coulomb blockade thermometers (CBT) in an intermediate temperature regime, where measurements with enhanced accuracy are possible due to the increased magnitude of the differential conductance dip. Previous theoretical results show that corrections to the half width and to the depth of the measured conductance dip of a sensor are needed, when leaving the regime of weak Coulomb blockade towards lower temperatures. In the present work, we demonstrate experimentally that the temperature range of a CBT sensor can be extended by employing these corrections without compromising the primary nature or the accuracy of the thermometer.Comment: 8 pages, 4 figure

    Tunnel Spectroscopy of a Proximity Josephson Junction

    Get PDF
    We present tunnel spectroscopy experiments on the proximity effect in lateral superconductor-normal metal-superconductor (SNS) Josephson junctions. Our weak link is embedded into a superconducting (S) ring allowing phase biasing of the Josephson junction by an external magnetic field. We explore the temperature and phase dependence of both the induced mini-gap and the modification of the density of states in the normal (N) metal. Our results agree with a model based on the quasiclassical theory in the diffusive limit. The device presents an advanced version of the superconducting quantum interference proximity transistor (SQUIPT), now reaching flux sensitivities of 3 nA/Φ0/\Phi_0 where Φ0\Phi_0 is the flux quantum.Comment: 5 pages, 4 figure

    Metallic Coulomb Blockade Thermometry down to 10 mK and below

    Get PDF
    We present an improved nuclear refrigerator reaching 0.3 mK, aimed at microkelvin nanoelectronic experiments, and use it to investigate metallic Coulomb blockade thermometers (CBTs) with various resistances R. The high-R devices cool to slightly lower T, consistent with better isolation from the noise environment, and exhibit electron-phonon cooling ~ T^5 and a residual heat-leak of 40 aW. In contrast, the low-R CBTs display cooling with a clearly weaker T-dependence, deviating from the electronphonon mechanism. The CBTs agree excellently with the refrigerator temperature above 20 mK and reach a minimum-T of 7.5 +/- 0.2 mK.Comment: 3 pages, 3 (color) figure

    Study of Field-Induced Magnetic Order in Singlet-Ground-State Magnet CsFeCl3_3

    Full text link
    The field-induced magnetic order in the singlet-ground-state system CsFeCl3_3 has been studied by measuring magnetization and neutron diffraction. The field dependence of intensity for the neutron magnetic reflection has clearly demonstrated that the field-induced ordered phase is described by the order parameter . A condensate growth of magnons is investigated through the temperature dependence of MzM_z and MM_{\perp}, and this ordering is discussed in the context of a magnon Bose-Einstein condensation. Development of the coherent state and the static correlation length has been observed in the incommensurate phase in the field region of 5Hc5 H_{\rm c}, a satellite peak was found in coexistence with the commensurate peak at the phase boundary around 10 T, which indicates that the tilt of the c-axis would be less than 0.5\sim 0.5^{\circ} in the whole experiments.Comment: 5 pages, 5 figure

    The Josephson heat interferometer

    Full text link
    The Josephson effect represents perhaps the prototype of macroscopic phase coherence and is at the basis of the most widespread interferometer, i.e., the superconducting quantum interference device (SQUID). Yet, in analogy to electric interference, Maki and Griffin predicted in 1965 that thermal current flowing through a temperature-biased Josephson tunnel junction is a stationary periodic function of the quantum phase difference between the superconductors. The interplay between quasiparticles and Cooper pairs condensate is at the origin of such phase-dependent heat current, and is unique to Josephson junctions. In this scenario, a temperature-biased SQUID would allow heat currents to interfere thus implementing the thermal version of the electric Josephson interferometer. The dissipative character of heat flux makes this coherent phenomenon not less extraordinary than its electric (non-dissipative) counterpart. Albeit weird, this striking effect has never been demonstrated so far. Here we report the first experimental realization of a heat interferometer. We investigate heat exchange between two normal metal electrodes kept at different temperatures and tunnel-coupled to each other through a thermal `modulator' in the form of a DC-SQUID. Heat transport in the system is found to be phase dependent, in agreement with the original prediction. With our design the Josephson heat interferometer yields magnetic-flux-dependent temperature oscillations of amplitude up to ~21 mK, and provides a flux-to-temperature transfer coefficient exceeding ~ 60mK/Phi_0 at 235 mK [Phi_0 2* 10^(-15) Wb is the flux quantum]. Besides offering remarkable insight into thermal transport in Josephson junctions, our results represent a significant step toward phase-coherent mastering of heat in solid-state nanocircuits, and pave the way to the design of novel-concept coherent caloritronic devices.Comment: 4+ pages, 3 color figure

    Ultra-Sensitive Hot-Electron Nanobolometers for Terahertz Astrophysics

    Full text link
    The background-limited spectral imaging of the early Universe requires spaceborne terahertz (THz) detectors with the sensitivity 2-3 orders of magnitude better than that of the state-of-the-art bolometers. To realize this sensitivity without sacrificing operating speed, novel detector designs should combine an ultrasmall heat capacity of a sensor with its unique thermal isolation. Quantum effects in thermal transport at nanoscale put strong limitations on the further improvement of traditional membrane-supported bolometers. Here we demonstrate an innovative approach by developing superconducting hot-electron nanobolometers in which the electrons are cooled only due to a weak electron-phonon interaction. At T<0.1K, the electron-phonon thermal conductance in these nanodevices becomes less than one percent of the quantum of thermal conductance. The hot-electron nanobolometers, sufficiently sensitive for registering single THz photons, are very promising for submillimeter astronomy and other applications based on quantum calorimetry and photon counting.Comment: 19 pages, 3 color figure

    InAs nanowire hot-electron Josephson transistor

    Full text link
    At a superconductor (S)-normal metal (N) junction pairing correlations can "leak-out" into the N region. This proximity effect [1, 2] modifies the system transport properties and can lead to supercurrent flow in SNS junctions [3]. Recent experimental works showed the potential of semiconductor nanowires (NWs) as building blocks for nanometre-scale devices [4-7], also in combination with superconducting elements [8-12]. Here, we demonstrate an InAs NW Josephson transistor where supercurrent is controlled by hot-quasiparticle injection from normal-metal electrodes. Operational principle is based on the modification of NW electron-energy distribution [13-20] that can yield reduced dissipation and high-switching speed. We shall argue that exploitation of this principle with heterostructured semiconductor NWs opens the way to a host of out-of-equilibrium hybrid-nanodevice concepts [7, 21].Comment: 6 pages, 6 color figure
    corecore