233 research outputs found

    Bridging the Digital Divide in Health Care: The Role of Health Information Technology in Addressing Racial and Ethnic Disparities

    Get PDF
    Racial and ethnic disparities in health care have been consistently documented in the diagnosis, treatment, and outcomes of many common clinical conditions. There has been an acceleration of health information technology (HIT) implementation in the United States, with health care reform legislation including multiple provisions for collecting and using health information to improve and monitor quality and efficiency in health care. Despite an uneven and generally low level of implementation, research has demonstrated that HIT has the potential to improve quality of care and patient safety. If carefully designed and implemented, HIT also has the potential to eliminate disparities. Several root causes for disparities are amenable to interventions using HIT, particularly innovations in electronic health records, as well as strategies for chronic disease management. Recommendations regarding health care system, provider, and patient factors can help health care organizations address disparities as they adopt, expand, and tailor their HIT systems. In terms of health care system factors, organizations should (1) automate and standardize the collection of race/ethnicity and language data, (2) prioritize the use of the data for identifying disparities and tailoring improvement efforts, (3) focus HIT efforts to address fragmented care delivery for racial/ethnic minorities and limited-English-proficiency patients, (4) develop focused computerized clinical decision support systems for clinical areas with significant disparities, and (5) include input from racial/ethnic minorities and those with limited English proficiency in developing patient HIT tools to address the digital divide. As investments are made in HIT, consideration must be given to the impact that these innovations have on the quality and cost of health care for all patients, including those who experience disparities

    Toward a Consistent Description of the PNC Experiments in A=18-21 Nuclei

    Get PDF
    The experimental PNC results in 18^{18}F, 19^{19}F, 21^{21}Ne and the current theoretical analysis show a discrepancy . If one interprets the small limit of the experimentally extracted PNC matrix element for 21^{21}Ne as a destructive interference between the isoscalar and the isovector contribution, then it is difficult to understand why the isovector contribution in 18^{18}F is so small while the isoscalar + isovector contribution in 19^{19}F is relatively large. In order to understand the origin of this discrepancy a comparison of the calculated PNC matrix elements was performed. It is shown that the 18^{18}F and 21^{21}Ne matrix elements contain important contributions from 3ℏω\hbar \omega and 4ℏω\hbar \omega configuration and that the (0+1)ℏω\hbar \omega calculations give distorted results.Comment: REVTEX, 16 pages, 1 postscriptum figure uuencoded and appende

    Sense of coherence moderates job demand‐resources and impact on burnout among nurses and midwives in the context of the COVID ‐19 pandemic: a cross‐sectional survey.

    Get PDF
    This study aimed to test the propositions using the job demands‐resources (JD‐R) model for main/moderation/mediation effects of a sense of coherence and practice environment support on mental well-being (anxiety, depression and burnout) outcomes in nurses and midwives in Australia during the COVID-19 pandemic. Cross-sectional quantitative survey. The study was a cross-sectional design using self-report questionnaires reported as per the Reporting of Observational Studies in Epidemiology Guidelines. Following human research ethics approval (2020.ETH.00121) participants were recruited to take part in an online anonymous survey using self-report instruments to test the JD-R model in Australia. 156 participant nurses and midwives experienced anxiety, depression and emotional burnout during COVID-19. While a considerable proportion of participants indicated high levels of emotional exhaustion, their responses showed low levels of depersonalization (detached response to other people) and high levels of personal accomplishment (high levels of work performance and competence). A sense of coherence was a significant protective factor for mental health well-being for the participants, which is to say, high levels of sense of coherence were predictive of lower levels of anxiety, depression and burnout in this study sample. It is evident that both nursing and midwifery professions require psychosocial support to preserve their health both in the short and long term. Ensuring individualized tailored support will require a layered response within organizations aimed at individual self-care and collegial peer support. There was no patient or public contribution in this study, as the focus was on nurses and midwives

    Chiral three-nucleon forces and bound excited states in neutron-rich oxygen isotopes

    Get PDF
    We study the spectra of neutron-rich oxygen isotopes based on chiral two- and three-nucleon interactions. First, we benchmark our many-body approach by comparing ground-state energies to coupled-cluster results for the same two-nucleon interaction, with overall good agreement. We then calculate bound excited states in 21,22,23O, focusing on the role of three-nucleon forces, in the standard sd shell and an extended sdf7/2p3/2 valence space. Chiral three-nucleon forces provide important one- and two-body contributions between valence neutrons. We find that both these contributions and an extended valence space are necessary to reproduce key signatures of novel shell evolution, such as the N = 14 magic number and the low-lying states in 21O and 23O, which are too compressed with two-nucleon interactions only. For the extended space calculations, this presents first work based on nuclear forces without adjustments. Future work is needed and open questions are discussed.Comment: 6 pages, 4 figures, published versio

    Spectroscopic factors for bound s-wave states derived from neutron scattering lengths

    Full text link
    A simple and model-independent method is described to derive neutron single-particle spectroscopic factors of bound s-wave states in A+1Z=AZ⊗n^{A+1}Z = ^{A}Z \otimes n nuclei from neutron scattering lengths. Spectroscopic factors for the nuclei ^{13}C, ^{14}C, ^{16}N, ^{17}O, ^{19}O, ^{23}Ne, ^{37}Ar, and ^{41}Ar are compared to results derived from transfer experiments using the well-known DWBA analysis and to shell model calculations. The scattering length of ^{14}C is calculated from the ^{15}C_{g.s.} spectroscopic factor.Comment: 9 pages (uses revtex), no figures, accepted for publication in PRC, uuencoded tex-files and postscript-files available at ftp://is1.kph.tuwien.ac.at/pub/ohu/Thermal.u

    Shell Model Monte Carlo studies of neutron-rich nuclei in the 1s-0d-1p-0f shells

    Get PDF
    We demonstrate the feasibility of realistic Shell-Model Monte Carlo (SMMC) calculations spanning multiple major shells, using a realistic interaction whose bad saturation and shell properties have been corrected by a newly developed general prescription. Particular attention is paid to the approximate restoration of translational invariance. The model space consists of the full sd-pf shells. We include in the study some well-known T=0 nuclei and several unstable neutron-rich ones around N=20,28. The results indicate that SMMC can reproduce binding energies, B(E2) transitions, and other observables with an interaction that is practically parameter free. Some interesting insight is gained on the nature of deep correlations. The validity of previous studies is confirmed.Comment: 22 pages + 7 postscript figure

    Induced pseudoscalar coupling of the proton weak interaction

    Full text link
    The induced pseudoscalar coupling gpg_p is the least well known of the weak coupling constants of the proton's charged--current interaction. Its size is dictated by chiral symmetry arguments, and its measurement represents an important test of quantum chromodynamics at low energies. During the past decade a large body of new data relevant to the coupling gpg_p has been accumulated. This data includes measurements of radiative and non radiative muon capture on targets ranging from hydrogen and few--nucleon systems to complex nuclei. Herein the authors review the theoretical underpinnings of gpg_p, the experimental studies of gpg_p, and the procedures and uncertainties in extracting the coupling from data. Current puzzles are highlighted and future opportunities are discussed.Comment: 58 pages, Latex, Revtex4, prepared for Reviews of Modern Physic
    • 

    corecore