3,772 research outputs found

    Expression of the neural cell adhesion molecule NCAM in endocrine cells

    Get PDF
    We examined the expression of the neural cell adhesion molecule NCAM in a number of endocrine tissues of adult rat and in an endocrine tumor cell line. NCAM was found by immunoelectron microscopy to be present on the surface of all endocrine cells in the three lobes of the hypophysis, although staining was relatively less intense in the intermediate lobe, and in pancreatic islets. Pituicytes, hypophyseal glial cells, were also labeled for NCAM. A rat insulinoma cell line (RIN A2) also expressed NCAM as judged by immunocytochemistry. Analysis of NCAM antigenic determinants (Mr 180, 140, and 120 KD) revealed large variations in the relative proportions of NCAM polypeptides present in the different tissues. Although all tissues and cell lines expressed NCAM-140, NCAM-180 was not detected in the adenohypophysis, pancreas, or adrenal medulla, and NCAM-120 was found in none of the endocrine tissues or cell lines except at low levels in the neurohypophysis. The tumor cell line expressed significant levels of NCAM-180, which was most abundant in the neurohypophysis. These results show that NCAM expression appears to be a general property of endocrine cells, although the antigenic composition differs markedly from that in brain tissue. These data are discussed with regard to the embryological origins of the different endocrine tissues, and possible functional implications are suggested

    NCAM expression in endocrine cells

    Get PDF

    Complement and cytokine response in acute Thrombotic Thrombocytopenic Purpura

    Get PDF
    Complement dysregulation is key in the pathogenesis of atypical Haemolytic Uraemic Syndrome (aHUS), but no clear role for complement has been identified in Thrombotic Thrombocytopenic Purpura (TTP). We aimed to assess complement activation and cytokine response in acute antibody-mediated TTP. Complement C3a and C5a and cytokines (interleukin (IL)-2, IL-4, IL-6, IL-10, tumour necrosis factor, interferon-γ and IL-17a) were measured in 20 acute TTP patients and 49 remission cases. Anti-ADAMTS13 immunoglobulin G (IgG) subtypes were measured in acute patients in order to study the association with complement activation. In acute TTP, median C3a and C5a were significantly elevated compared to remission, C3a 63·9 ng/ml vs. 38·2 ng/ml (P < 0·001) and C5a 16·4 ng/ml vs. 9·29 ng/ml (P < 0·001), respectively. Median IL-6 and IL-10 levels were significantly higher in the acute vs. remission groups, IL-6: 8 pg/ml vs. 2 pg/ml (P = 0·003), IL-10: 6 pg/ml vs. 2 pg/ml (P < 0·001). C3a levels correlated with both anti-ADAMTS13 IgG (rs  = 0·604, P = 0·017) and IL-10 (rs  = 0·692, P = 0·006). No anti-ADAMTS13 IgG subtype was associated with higher complement activation, but patients with the highest C3a levels had 3 or 4 IgG subtypes present. These results suggest complement anaphylatoxin levels are higher in acute TTP cases than in remission, and the complement response seen acutely may relate to anti-ADAMTS13 IgG antibody and IL-10 levels

    Derivatives of meromorphic functions of finite order

    Get PDF
    A result is proved concerning meromorphic functions of finite order in the plane such that all but finitely many zeros of the second derivative are zeros of the first derivative

    Differential expression of the neural cell adhesion molecule NCAM 140 in human pituitary tumors

    Get PDF
    We have analyzed the expression of the intracellular marker protein neuron specific enolase (NSE), synaptophysin (SYN) and of the cell surface marker NCAM (neural cell adhesion molecule) in both normal human hypophysis and in pituitary adenomas in order to explore their potential use as diagnostic tools. All adenomas (4 prolactinomas, 3 growth hormone (GH) producing adenomas and 4 inactive adenomas) showed SYN and NSE immunoreactivity on tissue sections and this was confirmed by immunoblots. NCAM 140 (an isoform of NCAM with molecular mass 140 kDa) was detected by immunoblotting in normal human adenohypophysis, in all GH adenomas, and in three out of four inactive adenomas, but not in prolactinomas. Using highly sensitive techniques, NCAM immunoreactivity was observed by electron microscopy in all adenomas. These data indicate that NCAM 140 is a constituent of the cell surface of endocrine cells in both normal human adenohypophysis and its tumors. Since prolactinomas express very low levels of NCAM 140 compared to other hypophyseal tumors its virtual absence could be used for differential diagnosis. A combined analysis of NCAM, SYN and NSE could be useful to characterize inactive adenomas which are not immunoreactive for pituitary hormones and which may contain no or only low levels of the alpha chain of the glycoprotein hormones

    Fertilizer Recommendations for the West Cross Timbers.

    Get PDF
    5 p

    Seasonal evolution of supraglacial lakes on an East Antarctic outlet glacier

    Get PDF
    Supraglacial lakes are known to influence ice melt and ice flow on the Greenland ice sheet and potentially cause ice shelf disintegration on the Antarctic Peninsula. In East Antarctica, however, our understanding of their behavior and impact is more limited. Using >150 optical satellite images and meteorological records from 2000 to 2013, we provide the first multiyear analysis of lake evolution on Langhovde Glacier, Dronning Maud Land (69°11′S, 39°32′E). We mapped 7990 lakes and 855 surface channels up to 18.1 km inland (~670 m above sea level) from the grounding line and document three pathways of lake demise: (i) refreezing, (ii) drainage to the englacial/subglacial environment (on the floating ice), and (iii) overflow into surface channels (on both the floating and grounded ice). The parallels between these mechanisms, and those observed on Greenland and the Antarctic Peninsula, suggest that lakes may similarly affect rates and patterns of ice melt, ice flow, and ice shelf disintegration in East Antarctica

    Evolutionary History and Novel Biotic Interactions Determine Plant Responses to Elevated CO2 and Nitrogen Fertilization

    Get PDF
    A major frontier in global change research is predicting how multiple agents of global change will alter plant productivity, a critical component of the carbon cycle. Recent research has shown that plant responses to climate change are phylogenetically conserved such that species within some lineages are more productive than those within other lineages in changing environments. However, it remains unclear how phylogenetic patterns in plant responses to changing abiotic conditions may be altered by another agent of global change, the introduction of non-native species. Using a system of 28 native Tasmanian Eucalyptus species belonging to two subgenera, Symphyomyrtus and Eucalyptus, we hypothesized that productivity responses to abiotic agents of global change (elevated CO2 and increased soil N) are unique to lineages, but that novel interactions with a nonnative species mediate these responses. We tested this hypothesis by examining productivity of 1) native species monocultures and 2) mixtures of native species with an introduced hardwood plantation species, Eucalyptus nitens, to experimentally manipulated soil N and atmospheric CO2. Consistent with past research, we found that N limits productivity overall, especially in elevated CO2 conditions. However, monocultures of species within the Symphyomyrtus subgenus showed the strongest response to N (gained 127% more total biomass) in elevated CO2 conditions, whereas those within the Eucalyptus subgenus did not respond to N. Root:shoot ratio (an indicator of resource use) was on average greater in species pairs containing Symphyomyrtus species, suggesting that functional traits important for resource uptake are phylogenetically conserved and explaining the phylogenetic pattern in plant response to changing environmental conditions. Yet, native species mixtures with E. nitens exhibited responses to CO2 and N that differed from those of monocultures, supporting our hypothesis and highlighting that both plant evolutionary history and introduced species will shape community productivity in a changing world
    corecore