320 research outputs found

    Salisapiliaceae – a new family of oomycetes from marsh grass litter of southeastern North America

    Get PDF
    Several filamentous oomycete species of the genus Halophytophthora have recently been described from marine environments, mostly from subtropical and tropical ecosystems. During a survey of oomycetes from leaf litter of Spartina alterniflora in salt marshes of southeastern Georgia, isolates of four taxa were recovered that bore similarity to some members of Halophytophthora but were highly divergent from isolates of Halophytophthora s.str. based on a combined sequence analysis of two nuclear loci. In phylogenetic analyses, these isolates were placed basal to a monophyletic group comprised of Pythium of the Pythiaceae and the Peronosporaceae. Sequence and morphology of these taxa diverged from the type species Halophytophthora vesicula, which was placed within the Peronosporaceae with maximum support. As a consequence a new family, the Salisapiliaceae, and a new genus, Salisapilia, are described to accommodate the newly discovered species, along with one species previously classified within Halophytophthora. Morphological features that separate these taxa from Halophytophthora are a smaller hyphal diameter, oospore production, lack of vesicle formation during sporulation, and a plug of hyaline material at the sporangial apex that is displaced during zoospore release. Our findings offer a first glance at the presumably much higher diversity of oomycetes in estuarine environments, of which ecological significance requires further exploration

    Biologically active Phytophthora mating hormone prepared by catalytic asymmetric total synthesis

    Get PDF
    A Phytophthora mating hormone with an array of 1,5-stereogenic centers has been synthesized by using our recently developed methodology of catalytic enantioselective conjugate addition of Grignard reagents. We applied this methodology in a diastereo- and enantioselective iterative route and obtained two of the 16 possible stereoisomers of Phytophthora hormone α1. These synthetic stereoisomers induced the formation of sexual spores (oospores) in A2 mating type strains of three heterothallic Phytophthora species, P. infestans, P. capsici, and P. nicotianae but not in A1 mating type strains. The response was concentration-dependent, and the oospores were viable. These results demonstrate that the biological activity of the synthetic hormone resembles that of the natural hormone α1. Mating hormones are essential components in the sexual life cycle of a variety of organisms. For plant pathogens like Phytophthora, sexual reproduction is important as a source of genetic variation. Moreover, the thick-walled oospores are the most durable propagules that can survive harsh environmental conditions. Sexual reproduction can thus greatly affect disease epidemics. The availability of synthetic compounds mimicking the activity of Phytophthora mating hormone will be instrumental for further unravelling sexual reproduction in this important group of plant pathogens.

    Measurement of the electric dipole moments for transitions to rubidium Rydberg states via Autler-Townes splitting

    Full text link
    We present the direct measurements of electric-dipole moments for 5P3/2→nD5/25P_{3/2}\to nD_{5/2} transitions with 20<n<4820<n<48 for Rubidium atoms. The measurements were performed in an ultracold sample via observation of the Autler-Townes splitting in a three-level ladder scheme, commonly used for 2-photon excitation of Rydberg states. To the best of our knowledge, this is the first systematic measurement of the electric dipole moments for transitions from low excited states of rubidium to Rydberg states. Due to its simplicity and versatility, this method can be easily extended to other transitions and other atomic species with little constraints. Good agreement of the experimental results with theory proves the reliability of the measurement method.Comment: 12 pages, 6 figures; figure 6 replaced with correct versio

    Observation of coherent many-body Rabi oscillations

    Full text link
    A two-level quantum system coherently driven by a resonant electromagnetic field oscillates sinusoidally between the two levels at frequency Ω\Omega which is proportional to the field amplitude [1]. This phenomenon, known as the Rabi oscillation, has been at the heart of atomic, molecular and optical physics since the seminal work of its namesake and coauthors [2]. Notably, Rabi oscillations in isolated single atoms or dilute gases form the basis for metrological applications such as atomic clocks and precision measurements of physical constants [3]. Both inhomogeneous distribution of coupling strength to the field and interactions between individual atoms reduce the visibility of the oscillation and may even suppress it completely. A remarkable transformation takes place in the limit where only a single excitation can be present in the sample due to either initial conditions or atomic interactions: there arises a collective, many-body Rabi oscillation at a frequency N0.5ΩN^0.5\Omega involving all N >> 1 atoms in the sample [4]. This is true even for inhomogeneous atom-field coupling distributions, where single-atom Rabi oscillations may be invisible. When one of the two levels is a strongly interacting Rydberg level, many-body Rabi oscillations emerge as a consequence of the Rydberg excitation blockade. Lukin and coauthors outlined an approach to quantum information processing based on this effect [5]. Here we report initial observations of coherent many-body Rabi oscillations between the ground level and a Rydberg level using several hundred cold rubidium atoms. The strongly pronounced oscillations indicate a nearly complete excitation blockade of the entire mesoscopic ensemble by a single excited atom. The results pave the way towards quantum computation and simulation using ensembles of atoms

    Pyricularia are mostly host-specialized with limited reciprocal cross-infection between wheat and endemic grasses in Minas Gerais, Brazil.

    Get PDF
    Abstract: Wheat blast, caused by Pyricularia oryzae Triticum (PoT), is an emerging threat to global wheat production. Current understanding of the population biology of the pathogen and epidemiology of the disease has been based on phylogenomic studies that compared the wheat blast pathogen with isolates collected from grasses that were invasive to Brazilian wheat fields. In this study, we performed a comprehensive sampling of blast lesions in wheat crops and endemic grasses found in and away from wheat fields in Minas Gerais. A total 1,368 diseased samples were collected (976 leaves of wheat and grasses and 392 wheat heads) which yielded a working collection of 564 Pyricularia isolates. We show that, contrary to earlier implications, PoT was rarely found on endemic grasses and, conversely, members of grass-adapted lineages were rarely found on wheat. Instead, most lineages were host-specialized with constituent isolates usually grouping according to their host-of-origin. With regard to the dominant role proposed for signalgrass in wheat blast epidemiology, we found only one PoT member in 67 isolates collected from signalgrass grown away from wheat fields, and only three members of Urochloa-adapted lineages among hundreds of isolates from wheat. Cross-inoculation assays on wheat and a signalgrass used in pastures (U. brizantha) suggested that the limited cross-infection observed in the field may be due to innate compatibility differences. Whether or not the observed level of cross-infection would be sufficient to provide an inoculum reservoir, or serve as a bridge between wheat growing regions, is questionable and, therefore, deserves further investigation

    Phytophthora foliorum sp. nov., a new species causing leaf blight of azalea

    Get PDF
    a b s t r a c t A previously unknown Phytophthora was recovered more than 60 times from evergreen hybrid azalea leaves collected during surveys for the sudden oak death pathogen Phytophthora ramorum in California and Tennessee. The novel Phytophthora was discovered when genomic DNA from this species cross-reacted with the ITS-based diagnostic PCR primers used to screen plants for the presence of P. ramorum. This species had caducous, semi-papillate sporangia, was homothallic with both paragynous and amphigynous antheridia, and was pathogenic on both wounded and intact azalea leaves. Nuclear and mitochondrial sequence data indicate that this species is related to, but distinct from, P. ramorum. AFLP analysis indicates that the isolates of this species have limited genotypic diversity and share no markers with P. ramorum. This paper presents the formal description of P. foliorum as a new species and underscores the need for caution when relying solely on DNA-based diagnostic tools

    TraR, a Homolog of a RNAP Secondary Channel Interactor, Modulates Transcription

    Get PDF
    Recent structural and biochemical studies have identified a novel control mechanism of gene expression mediated through the secondary channel of RNA Polymerase (RNAP) during transcription initiation. Specifically, the small nucleotide ppGpp, along with DksA, a RNAP secondary channel interacting factor, modifies the kinetics of transcription initiation, resulting in, among other events, down-regulation of ribosomal RNA synthesis and up-regulation of several amino acid biosynthetic and transport genes during nutritional stress. Until now, this mode of regulation of RNAP was primarily associated with ppGpp. Here, we identify TraR, a DksA homolog that mimics ppGpp/DksA effects on RNAP. First, expression of TraR compensates for dksA transcriptional repression and activation activities in vivo. Second, mutagenesis of a conserved amino acid of TraR known to be critical for DksA function abolishes its activity, implying both structural and functional similarity to DksA. Third, unlike DksA, TraR does not require ppGpp for repression of the rrnB P1 promoter in vivo and in vitro or activation of amino acid biosynthesis/transport genes in vivo. Implications for DksA/ppGpp mechanism and roles of TraR in horizontal gene transfer and virulence are discussed

    The Saccharomyces cerevisiae Histone Chaperone Rtt106 Mediates the Cell Cycle Recruitment of SWI/SNF and RSC to the HIR-Dependent Histone Genes

    Get PDF
    In Saccharomyces cerevisiae, three out of the four histone gene pairs (HTA1-HTB1, HHT1-HHF1, and HHT2-HHF2) are regulated by the HIR co-repressor complex. The histone chaperone Rtt106 has recently been shown to be present at these histone gene loci throughout the cell cycle in a HIR- and Asf1-dependent manner and involved in their transcriptional repression. The SWI/SNF and RSC chromatin remodeling complexes are both recruited to the HIR-dependent histone genes; SWI/SNF is required for their activation in S phase, whereas RSC is implicated in their repression outside of S phase. Even though their presence at the histone genes is dependent on the HIR complex, their specific recruitment has not been well characterized. In this study we focused on characterizing the role played by the histone chaperone Rtt106 in the cell cycle-dependent recruitment of SWI/SNF and RSC complexes to the histone genes.Using GST pull-down and co-immunoprecipitation assays, we showed that Rtt106 physically interacts with both the SWI/SNF and RSC complexes in vitro and in vivo. We then investigated the function of this interaction with respect to the recruitment of these complexes to HIR-dependent histone genes. Using chromatin immunoprecipitation assays (ChIP), we found that Rtt106 is important for the recruitment of both SWI/SNF and RSC complexes to the HIR-dependent histone genes. Furthermore, using synchronized cell cultures, we showed by ChIP assays that the Rtt106-dependent SWI/SNF recruitment to these histone gene loci is cell cycle regulated and restricted to late G1 phase just before the peak of histone gene expression in S phase.Overall, these data strongly suggest that the interaction between the histone chaperone Rtt106 and both the SWI/SNF and RSC chromatin remodeling complexes is important for the cell cycle regulated recruitment of these two complexes to the HIR-dependent histone genes

    Distribution of Mycobacterium ulcerans in Buruli Ulcer Endemic and Non-Endemic Aquatic Sites in Ghana

    Get PDF
    Mycobacterium ulcerans, the causative agent of Buruli ulcer, is an emerging environmental bacterium in Australia and West Africa. The primary risk factor associated with Buruli ulcer is proximity to slow moving water. Environmental constraints for disease are shown by the absence of infection in arid regions of infected countries. A particularly mysterious aspect of Buruli ulcer is the fact that endemic and non-endemic villages may be only a few kilometers apart within the same watershed. Recent studies suggest that aquatic invertebrate species may serve as reservoirs for M. ulcerans, although transmission pathways remain unknown. Systematic studies of the distribution of M. ulcerans in the environment using standard ecological methods have not been reported. Here we present results from the first study based on random sampling of endemic and non-endemic sites. In this study PCR-based methods, along with biofilm collections, have been used to map the presence of M. ulcerans within 26 aquatic sites in Ghana. Results suggest that M. ulcerans is present in both endemic and non-endemic sites and that variable number tandem repeat (VNTR) profiling can be used to follow chains of transmission from the environment to humans. Our results suggesting that the distribution of M. ulcerans is far broader than the distribution of human disease is characteristic of environmental pathogens. These findings imply that focal demography, along with patterns of human water contact, may play a major role in transmission of Buruli ulcer

    On the analysis of the contact angle for impacting droplets using a polynomial fitting approach

    Get PDF
    ractical considerations on the measurement of the dynamic contact angle and the spreading diameter of impacting droplets are discussed in this paper. The contact angle of a liquid is commonly obtained either by a polynomial or a linear fitting to the droplet profile around the triple phase point. Previous works have focused on quasi-static or sessile droplets, or in cases where inertia does not play a major role on the contact angle dynamics. Here, we study the effect of droplet shape, the order of the fitting polynomial, and the fitting domain, on the measurement of the contact angle on various stages following droplet impact where the contact line is moving. Our results, presented in terms of the optical resolution and the droplet size, show that a quadratic fitting provides the most consistent results for a range of various droplet shapes. As expected, our results show that contact angle values are less sensitive to the fitting conditions for the cases where the droplet can be approximated to a spherical cap. Our experimental conditions include impact events with liquid droplets of different sizes and viscosities on various substrates. In addition, validating past works, our results show that the maximum spreading diameter can be parameterised by the Weber number and the rapidly advancing contact angle
    • …
    corecore