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Abstract Practical considerations on the measurement of the dynamic contact angle and the spreading
diameter of impacting droplets are discussed in this paper. The contact angle of a liquid is commonly
obtained either by a polynomial or a linear fitting to the droplet profile around the triple phase point.
Previous works have focused on quasi-static or sessile droplets, or in cases where inertia does
not play a major role on the contact angle dynamics. Here, we study the effect of droplet
shape, the order of the fitting polynomial, and the fitting domain, on the measurement
of the contact angle on various stages following droplet impact where the contact line is
moving. Our results, presented in terms of the optical resolution and the droplet size, show that a
quadratic fitting provides the most consistent results for a range of various droplet shapes. As expected,
our results show that contact angle values are less sensitive to the fitting conditions for the cases where the
droplet can be approximated to a spherical cap. Our experimental conditions include impact events with
liquid droplets of different sizes and viscosities on various substrates. In addition, validating past works,
our results show that the maximum spreading diameter can be parameterised by the Weber number and
the rapidly advancing contact angle.

Keywords Contact angle · droplet impact

1 Introduction

.eps Quantifying the wettability of a liquid on a solid substrate is critically important for situations where
either liquid adhesion or repellence are required. Industrial processes such as coating (Yarin (2006)) and
the spraying of pesticides (Bergeron et al. (2000)) are examples where maximising the liquid adherence
to a solid is desired. In contrast, repellence is sought in the design of materials with anti-icing properties
(Liu et al. (2017)) or impermeable clothing (Zhang et al. (2018)). How much a liquid wets a solid is known
to depend on the properties of both, the liquid and the solid substrate, and is commonly studied through
the measurement of the contact angle. This contact angle is defined as the geometric angle between the
tangent of the droplet surface and the tangent to the solid surface at the triple point, i.e. the angle formed
by the intersection of the liquid-solid and the liquid-vapour interfaces (Joanny and De Gennes (1984);
Eral et al. (2013)). At the triple point, a solid, a liquid droplet, and the surrounding gas are all in contact,
creating three relevant surface effects, i.e., the solid-liquid γsl, solid-gas γsv and liquid-gas γlv forces. A
sessile droplet on a solid surface adopts a semi-spherical shape reaching a minimum energy state and
equilibrium (Chen (2013); Yuan and Lee (2013)); this balance is described by the Young’s equation. For
a sessile droplet on an ideal flat surface that is smooth, homogeneous, rigid and insoluble, the contact
angle is given by,

M.A. Quetzeri Santiago and A.A. Castrejón-Pita
Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, U.K.
E-mail: alfonso.castrejon-pita@wadham.ox.ac.uk

M.A. Quetzeri Santiago and J.R. Castrejón-Pita
School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, U.K. E-mail: castre-
jon@cantab.net



2 Miguel A. Quetzeri-Santiago et al.

γsv = γsl + γlvcos(θ), (1)

where θ is the so-called Young’s contact angle (Good (1992)). Equation 1 represents the balance of
surface tension forces between solid, liquid and gas (Bonn et al. (2009)) and is satisfied when thermody-
namic equilibrium is reached. At equilibrium, a unique equilibrium contact angle and diameter Deq are
obtained regardless of the mechanism used to deposit the droplet on the substrate (Bonn et al. (2009)). In
practice, the angle given by Eq. 1 is not experimentally measurable, as substrate heterogeneities lead to
thermodynamic metastable states, affecting the contact angle (Marmur (1994)). In contrast, experiments
determine the apparent contact angle, which is associated to the macroscopic geometry achieved by the
liquid surface. In fact, every surface has at least two asymptotic possible values for the apparent contact
angle: the advancing and receding angles (θa and θr respectively). The former is seen when a droplet
spreads over a solid surface and the latter is observed on receding droplets (Yarin (2006)). It has been
argued that the θa and θr are the contact angles that truly describe substrate wettability,
Huhtamäki et al. (2018). The difference between the maximum and the minimum contact angles is
known as the contact angle hysteresis (Good (1992)). Additionally, there are two categories of advancing
and receding angles, namely dynamic and quasi-static. The dynamic advancing and receding angles are
found when the contact line is in motion and far from equilibrium. In contrast, the quasi-static advancing
and receding angles are found when the droplet is sessile or not largely deformed even if the contact line
is moving (Yarin (2006); Snoeijer and Andreotti (2013)).

The preferred technique to measure the quasi-static contact angles, θa and θr, is the
sessile-drop method that consists on pumping liquid into and out of a droplet resting
on a substrate - measuring the advancing and receding angles respectively (Eral et al.
(2013),Huhtamäki et al. (2018)). The advantage of this method is that it also uses conven-
tional optical imaging. The disadvantages are that is droplet-size-dependent and droplet
shapes can be distorted by the wettability of the feeding needle, (Good (1992); Eral et al.
(2013)). However, in many other situations, where the contact line is far from equilibrium,
quasi-static angles are not appropriate to characterise the surface wettability. Examples of
where the contact line is far from equilibrium are found during the spreading or receding of an impacting
droplet on a dry solid substrate. Many studies have been devoted to understanding these phenomena,
finding that these dynamics are controlled by a subtle interplay between inertia, viscosity and capillary
forces. The dynamics of drop impact onto solid substrates has received much attention due to their
relevance in inkjet printing (Derby (2010)), paint spraying (Pasandideh-Fard et al. (2002)), and other
aerosol based coatings (Fogliati et al. (2006)). At least six different outcomes of drop impact have been
identified: deposition, prompt splash, corona splash, receding break up, partial rebound, and complete re-
bound (Rioboo et al. (2001)) (see Refs. (Yarin (2006); Josserand and Thoroddsen (2016)) for an extensive
review). Upon drop impact, past works have shown that the contact diameter grows as D ∝ t1/2 (where
t is the time after impact) until it reaches a maximum value Dmax (Yarin (2006)). In this initial stage,
droplets can slowly recede to acquire a smaller equilibrium contact diameter Deq. Under some conditions,
a second spreading/receding phase can then be observed (Rioboo et al. (2001)) that ends with the drop
oscillating around the equilibrium contact diameter (Bayer and Megaridis (2006)). The first spreading
stage is commonly characterised in terms of the spread factor d(t) = D(t)

D0
, or the maximum spread factor

dm = Dmax

D0
, where D0 is the diameter of the drop prior impact.

Past works have found dm to be in the range of 1.3 to 5.0 depending on the impacting conditions
(Šikalo et al. (2002); Rioboo et al. (2002); Josserand and Thoroddsen (2016)). In fact, for perfectly non-
wetting substrates, Eggers et al. (2010), proposed the scaling dm ∝ Re1/5f(WeRe−2/5), where dm is
found to be dependent on the interplay between viscous and capillary effects. Here, Re is the
Reynolds number Re = ρU0D0/µ and We is the Weber number We = ρU2

0D0/σ, where U0 is the
droplet impact velocity and µ, ρ and σ are the fluid dynamic viscosity, density and surface
tension, respectively. This scaling reduces to dm ∝ We1/2 for high impact speeds (i.e. for
conditions where viscous effects can be neglected) and to dm ∝ Re1/5 in the viscous regime
(Eggers et al. (2010)). This scaling has been experimentally validated by Laan et al. (2014).
Other models have been proposed for wetting (dissipative) substrates (Šikalo et al. (2005);
Bonn et al. (2009)). According to Lee et al. (2016a,b) the impact dynamics can be determined
either by the liquid characteristics and the substrate roughness, or the dynamic contact angle (θD) at dm.
Moreover, Visser et al. (2015) conducted experiments with micrometer sized droplets, concluding that the



On the analysis of the contact angle for impacting droplets using a polynomial fitting approach 3

drop impact phenomena are scale-invariant and dependent of both Re and We. In contrast, experimental
studies by Šikalo et al. (2002) suggest that dm depends on D0, as viscosity effects are dependent on the
droplet size. Additionally, for drops impacting stainless steel, glass and paraffin, past results have found
that dm depends on both the contact angle and a critical Weber number (Šikalo et al. (2005); Vadillo
et al. (2009); Lunkad et al. (2007); Chen (2013)).

Furthermore, Yokoi et al. (2009) ran numerical simulations of droplets spreading over
solid substrates using different contact angle models: dynamic, equilibrium and static con-
tact angles. Numerical results were compared with experiments carried out by Vadillo et al.
(2009) concluding that the dynamic contact angle model produced the best agreement with
experiments. Likewise, de Goede et al. (2019) concluded that, for impact velocities U0 <
1 m/s, surface wettability can be used to predict dm. Moreover, Quetzeri-Santiago et al.
(2019b) demonstrated that the dynamic contact angle parametrises the splashing outcome
of impacting droplets on solid wettable and non-wettable substrates.

As discussed above, it is clear that many past research on droplet spreading and splashing rely on
the detection of the contact line, and on the measurement of the contact angle. However, a standard
measurement method is unavailable and, consequently, the contact angle is often obtained and reported
using different techniques. One of the most widely used practices to obtain the equilibrium contact angle
is through the axisymmetric drop shape profiling. In this method, the contact angle is measured by
numerically fitting a Laplace equation to the droplet surface profile (Rotenberg et al. (1983); Del Rıo and
Neumann (1997)). This method requires perfectly axisymmetric and sessile droplets (Bateni et al. (2003);
Del Rıo and Neumann (1997)). An alternative method is to approximate the droplet profile to a sphere
or an ellipse (Lamour et al. (2010)) and obtain the contact angle from these fittings. Importantly, these
two methods are not suitable for conditions where a droplet is largely deformed or cannot be modelled
by a spherical cap, e.g. during droplet impact. In these cases, the goniometric mask method is often
used. In this approach, a goniometer is digitally located at the contact line to automatically measure the
contact angle formed at its proximity by the droplet (Biolè and Bertola (2015); Lee et al. (2016a,b)).
Another suitable method for measuring the contact angle is through the fitting of a polynomial function
to the droplet profile. This method provides accurate results at a minimal computational cost (Chini and
Amirfazli (2011); Bateni et al. (2003); Chen et al. (2018)). In fact, Bateni et al. (2003) and Atefi et al.
(2013), studied the effect of the fitting polynomial order on the measurement of the contact angle for
sessile droplets finding that, with the suitable parameters, results reproduce those of the axisymmetric
drop shape analysis-profile (ADSA-P).

These last two works are the exception to the norm, as many other past research do not describe in
detail the methods used to determine the contact angle and often adopt imaging processing algorithms
without further testing their reliability. Most past works have focused on measurements of the
contact angle of sessile or quasi-static droplets, and not on the contact angle of rapidly mov-
ing contact lines. Furthermore, the vast majority of these previous studies do not report
on the details of error analysis of uncertainty sources. In this paper, we use various polynomial
fittings to measure the dynamic contact angle, i.e. the rapidly-advancing and receding contact
angles of an impacting droplet on a solid substrate . We contrast their results, and discuss their
differences. Additionally, we analyse the effect of an inadequate detection of the contact line (pinning
points) on the measurement of the contact angle. In particular, we focus on millimeter-sized drops im-
pacting onto hydrophilic substrates (15 < θ < 90), with impact velocities leading to spreading and simple
deposition (1.1 < U0 < 2.1 m/s). The aim of the paper is to highlight the difficulties encountered when
measuring the dynamic contact angle, the contact line diameter, and the contact line velocity.

2 Experimental Method

The experiments consist of visualising single drops, impacting dry solid substrates. In our conditions,
the substrate is perpendicular to the impact direction. Three substrates were used: glass, Teflon-covered
glass and acrylic. Water-glycerol solutions and pure water drops (see table 1 for fluid characteristics) were
produced by two methods: by dripping and by using a drop on demand (DoD) generator. In the former,
a pump slowly pushes the liquid at the end of a syringe tip (of 1.0 mm diameter) until a drop falls. In
the latter, an electromagnetic actuator pushes the liquid through a nozzle to create a droplet (Castrejón-
Pita et al. (2008)). In the DoD experiments, a 1.0 mm outer diameter conical nozzle was used and the
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Fig. 1 Sketch showing the variables studied in this work. The contact line (or the triple point) is shown as a star and
indicates the place where all the three phases meet. In a) the interrogation areas define a perimeter along the droplet’s
profile of size δ (in pixels). In b) the substrate horizon is illustrated as a black thick line. In practice, this horizon might be
misplaced by image analysis algorithms by a height λ due to the interface being out of focus or fuzzy.

driving signal is a single square pulse. In our experiments, drop impact speeds ranged from 1.1 to 1.7
m/s, and the drop diameter ranged from 1.1 to 2.5 mm. Table 2 summarises our experimental conditions.
The impact events were captured using a Phantom V710 coupled to a 12× Navitar microscope lens in
a shadowgraph configuration. The camera resolution was set to 1280 × 256 pixels2 with a sample rate
of 23, 000 frames per second with an exposure time of 10 µs. We studied the magnification effect
on the algorithm method using three different effective resolutions of the experiments, 3.91
µm 6.47 µm and 8.86 µm per pixel. The camera is inclined ≈ 2 degrees to obtain a clear image of
the contact line; the effect of this inclination on the measurement of the contact angle is negligible and
discussed in Section 3.2 (Quetzeri-Santiago et al. (2019a)). Moreover, we ensured that the droplet
was perfectly focused and the aperture/iris was (for our light settings) remained as closed
as possible to maximise the depth of field. A 300 W LED light source and an optical diffuser were
utilised to produce a uniform bright backlight.

Table 1 Fluid properties used throughout the experiments.

Fluid Viscosity Surface tension Density
(mPa s) (mN/m) (kg/m3)

Water 0.9 70.8 998
Sol 1 2.0 70.3 1065
Sol 2 60.0 66.0 1126

In this investigation, we use a Matlab routine to measure the contact angle. The code works by fitting
a polynomial of order m to a section of the droplet profile near the contact line. The droplet and substrate
profiles are obtained by using a defined intensity threshold for the conversion of a greyscale image to a
binary format, using Otsu’s method (Otsu (1979)). This method automatically chooses the
threshold value that minimizes the intraclass variance of the thresholded black and white
pixels. The image processing steps are shown in figure 2. The droplet and substrate profiles are
then extracted as an array of pixels. The code first detects the substrate “horizon" by identifying the first
and last profile pixels of the binary image. Any pixel structure above this horizon is considered part of the
droplet, where the first out-of-line pixels from each side are identified as the contact points. The position
of these points are recorded in all the images to track the spreading diameter and thus the contact line
velocity. The left-hand and right-hand sides of the droplet boundary are independently analysed. For
each side, the code selects a set region of the droplet boundary array starting from the pinning point to
a set perimeter length δn. This region forms an interrogation area defined by the length δn, as illustrated
in Figure 1a. The code then fits an m-order polynomial function with the least squares method (OLS) to
the n pixels of the boundary (δn in each side). Finally, the algorithm computes the fitting derivative and
evaluates it at the pinning point: the contact angle is then computed from this value. For simplicity,
we chose the interface points at the centre of the pixels (no sub-pixelar resolution).

In this manuscript, we analyse the value of the contact angle as a function of δn, i.e. the number of
pixels n along the droplet profile used to fit the polynomial, and the order m of the polynomial. Addi-
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Fig. 2 Image processing steps. a)Original image, b)grey scale image converted to binary image using Otsu’s
method, c)detection of the boundary of the droplet and substrate, d)boundary of the droplet without the
substrate and e)original image after the processing. The navy blue contour corresponds to the droplet
boundary, the green (left) and red (right) stars show the pinning points, the light blue lines are the tangent
evaluated at the pinning point and the pink arcs correspond to the contact angle.

tionally, we study the effect of an offset λn on the detection of the substrate position on the measurement
of the contact angle as illustrated in Figure 1b. Our results are discussed in the following sections where
we also describe the most reliable conditions to measure the dynamic contact angle.

3 Results and discussion

Fig. 3 a) Example snapshots of the experimental and analysed images. The three sets correspond to the
Matlab processed images of a drop in the spreading phase. The images are arranged according to the number
of pixels used to fit a second-order polynomial to calculate the contact angle, i.e., 10 pixels −→ δ1/D0 = 0.0301,
30 pixels −→ δ2/D0 = 0.092, and 120 pixels −→ δ3/D0 = 0.369. The navy blue contour corresponds to the droplet
boundary, the red (left) and green (right) stars show the pinning points, the light blue lines correspond to
the tangent evaluated at the pinning point and the pink arcs correspond to the contact angle; b) shows a
close-up of the droplet contour detected by the Matlab algorithm.

Examples of our experimental results and analysis are shown in Figure 3 where a sequence of images
of a water drop impacting an acrylic substrate. The first spreading and receding phases are observed at
various times after impact. In the hydrophilic surfaces studied here, receding is negligible. In this work,
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Table 2 Experimental conditions.

Experiment Drop Generation Substrate Liquid D0 We Re
Number Method (mm)

1 Dripping Acrylic Water 2.41 43 2736
2 DoD Acrylic Water 2.47 49 2964
3 DoD Acrylic Water 1.12 45 1904
4 DoD Acrylic Sol 1 2.40 166 2717
5 DoD Acrylic Sol 2 2.10 169 870
6 Dripping Glass Water 2.53 46 2884
7 DoD Glass Water 2.63 46 2959
8 DoD Glass Water 1.10 44 1887
9 DoD Glass Sol 1 2.42 162 2662
10 DoD Glass Sol 2 1.98 164 832

we have focused our analysis on four different instants, i.e. i) the time of the first contact (t = 0.00 ms in
Figure 3), ii) the point where d(t) = dm/2 (t = 1.04 ms in Figure 3), iii) the time at maximum spreading
d(t) = dm (t = 2.08 ms in Figure 3), and iv) the first point of receding (t = 4.16 ms in Figure 3). These
times show the most representative behaviours found during the dynamics of impact. In
particular, at dm/2 the droplet is rapidly spreading and is highly deformed, a situation rarely
analysed in the literature. Accordingly, at these times, the droplet contact angle is reported in terms
of the droplet profile lengths (δn) and for various polynomial orders m. In addition, we also study the
effect of an inaccurate detection of the substrate position on the measurement of the contact angle.

3.1 The polynomial fitting

As noted by Bateni et al. (2003), the order of the polynomial used to adjust the droplet shape at the
pinning point is crucial to the value of the contact angle on sessile droplets. In this work, we have extended
this study to other conditions where the droplet is far from equilibrium and, thus its shape differs from
a spherical cap. Our first set of results is seen in Figure 4 where the contact angle is obtained for various
polynomial orders at the four relevant times previously discussed. Additionally, Figure 4 shows the contact
angle obtained in terms of the ratio between the number of pixels used to fit a m-degree polynomial and
the diameter of the impacting droplet (δ/D0). These results show that the measurement of the contact
angle is sensitive not only to the polynomial order but also to the instantaneous shape of the droplet. In
fact, for highly deformed droplets, differences of up to 100 degrees in the measured contact angle are seen
between the different-order polynomials. In these conditions, the polynomial order showing the largest
differences is that corresponding to a linear fit. As seen, for the linear fit (m = 1), the dynamic contact
angle decreases monotonically for increasing profile lengths for the four droplet shapes studied here. In
fact, even at instants where the droplet resembles spherical shapes, i.e. first contact (Figure 4a) and first
receding instants (Figure 4d), differences on the contact angle of up to 30 degrees are found for m = 1. In
contrast, higher order polynomials reach a stable contact angle value as the size ratio domain is increased.

Largely deformed droplets also offer intricate variations (Figures 4b and 4c). Here, large differences
in the contact angle value are observed for the various polynomial fittings and fitting domains. As seen
in our results, variations of up to 80 degrees can be obtained for droplets shapes in the early spreading
phases (Figure 4b) or up to 30 degrees at the maximum spreading diameter where droplets acquire the
characteristic pancake shape (Figure 4c). In practical terms, the contact angle should be measured at
the proximity of the contact line; consequently, any measuring method should include an upper limit for
the length domain. Moreover, as seen in Figure 5, for a time at d(t) = dm/2 a large number of
fitting pixels, translates in an inadequate fitting of the droplet profile. This is due to the
high droplet deformation far from the contact line. Additionally, a lower domain limit should also
exist for the fitting to correctly represent the droplet shape. Without a standard reference, or a theoretical
value for the apparent dynamic contact angle to compare our results with, we quantify the differences from
the various fitting domains through the standard deviation for different effective optical resolutions.
Figure 6 shows the standard deviation in terms of the parameter δ/D0 for different image
resolutions, and from the various polynomials used in this paper, for each δ/D0. Three
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Fig. 4 Contact angle in terms of the number of pixels used to fit the droplet profile. Here, four instants
found during droplet impact are analysed: a) the time of first contact, b) the point where d(t) = dm/2, c)
the time at maximum spreading diameter, dm, and d) the time when the receding phase starts. The contact
angle obtained from six different polynomial fittings for Experiment 5 (Table 2).

Fig. 5 Image analysis results of a fourth-order polynomial fit for various number of adjusted pixels δ/D0,
at a time when d(t) = dm/2. This example shows that the polynomial no longer faithfully represents the
profile of the droplet. This is due to the high droplet deformation far from the contact line.

resolutions are used: 3.91 (black squares), 6.47 (cyan circles) and 8.89 (blue triangles) µ
m/pixels..

As expected, the standard deviation obtained from all the polynomials is consistently low for the
receding case where the shape resembles a spherical cap. An exception is the dataset with an
effective resolution of 8.86 µm/pixel and and for a domain larger than δ/D0 = 0.25. We
attribute this to an overfitting of the droplet profile. In this condition, any domain larger than
10% of the droplet diameter produces a standard deviation of less than 5 degrees. A similar behaviour
is found at the point of first contact where a low deviation is seen for domains larger than 30% of
the droplet diameter. As discussed, in these two cases, the droplets are not largely deformed, resemble
spherical bodies, and, therefore, good fittings are obtained over a large fitting domain. The standard
deviation for largely deformed cases is rich but shows limited variations at short profile domains. Across
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all our experiments, the largest error is seen for the 3.91 µm/pixel resolution, which arises
from the blurring for the contact point. In fact, this effect is coupled to the lens settings and
characteristics as for our long distance microscope lens, an increase in the magnification
reduces the depth of field. Furthermore, two lenses working at the same magnification
can have different depth of fields, according to their aperture, and consequently produce
measurements with different standard deviations. Importantly, the standard deviations present
local minima around the domain range of δ/D0 = 0.04 to 0.10 (or 13 to 32 pixels for an effective
resolution of 6.47µm/pixel), where the various polynomial fittings seem to agree within a standard
deviation of 15 degrees. Moreover, the standard deviation in this region is particularly low (≈5 degrees)
for the highly deformed shapes and the receding case. As a result, we conclude that a robust domain
for a polynomial fitting is within the range corresponding to profile lengths of 4 to 10% of the droplet
diameter, for the three effective resolutions used in this study. This fitting range is consistent
with previous research asserting that larger domains might not trace the drop profile accurately (Chini
and Amirfazli (2011); Andersen and Taboryski (2017)). This upper limit has also been discussed
by Biolè and Bertola (2015), where their domain is determined by the need of their mask to
follow the droplet curvature, which requires a small mask, and âĂĲaccuracy in their area
measurement, which requires a bigger maskâĂİ. Technically speaking, our upper domain
limit can extend to the contact line found at the other end of the droplet contour. However,
as noted by other authors, we argue that the contact angle should be measured locally. Our
optimum region of measurement is found where the standard deviation of the data is at its
minimum value, across the various shapes.

Our next analysis focuses on the standard deviation in terms of the polynomial order; this is shown
in Figure 7. Interestingly, for the four shapes, the second order polynomial fitting consistently produces
the lowest standard deviation. In fact, this polynomial order has been used by other authors (Chini
and Amirfazli (2011)); here we confirm that this fitting is the most robust for dynamic contact angle
measurements.

Based on these results, we conclude that the fitting parameters that produce the most consistent results
across conditions is a second order polynomial fitting applied to a droplet profile length corresponding to
5% of that of the initial droplet diameter. Our standard deviation for these conditions is between
3 and 5 degrees (Quetzeri-Santiago et al. (2019a,b)). While this might appear large when
compared against measurements of static contact angle measurements (where hundreds of
measurements can be averaged for a single case) measurement of rapidly evolving contact
lines are scarce, with authors usually not reporting errors (or simply assigning an ambiguous
error). For instance, when using our algorithm to extract the static contact angle of a sessile
drop for which 100 images exist (extracted from a high-speed movie) under our experimental
conditions the experimental error is 0.6 degrees. In comparison, for the dynamic case, Lee
et al. (2016b) reported errors on the dynamic contact angle in the range of 2.5 to 9.8 degrees
and a maximum difference of 5 % between the polynomial fit method and the goniometric
mask method. Therefore, in the following sections, we strictly use these conditions when reporting the
contact angle.

3.2 Contact line & pinning points

In our experiments, special care was taken when setting the alignment and depth of field of our optical
system to obtain a sharp and well-defined substrate boundary. In practice, observing a sharp boundary is
often difficult and limited by the commercial availability of optical and illumination components, especially
for sub-millimetre droplets. In this section, we evaluate the sensitivity of contact angle measurements on
the correct identification of the location of the pinning points. As described above, this issue might arise
on experimental setups where images are out of focus, blurred or short of the depth of field. In our
experimental setup, we can identify the true pinning points within two pixels but that might not be
the case in other setups due to the conditions described above. Here, we study the effect of offsetting
the position of the substrate plane (otherwise call horizon) on the measurement of the contact angle,
mimicking potential visualisation limitations. This is illustrated in Figure 1b, where we define an offset
distance λ (in pixels) that can be added in our algorithm to the “true" substrate position; λ can be
negative if the fitting is forced to commence below the true position or positive if above.
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Fig. 6 Standard deviation in terms of the parameter δ/D0 for different image resolutions. The standard
deviation is calculated based on all the polynomials used in the analysis, for each δ/D0. Black squares, cyan
circles and blue triangles represent the various resolution used here, i.e. 3.91 µm/pixel, 6.47 µm/pixel and
8.89 µm/pixel, respectively. a) Results at the time of first contact, b) the time where d(t) = dm/2, c) the
time at maximum spreading d(t) = dm, and d) the time when the receding phase starts.

Fig. 7 Standard deviation of the contact angle calculated in terms of the polynomial order. The standard
deviation is the associated to all the δ/D0 considered in this paper for each polynomial. As seen, the
quadratic polynomial shows the smallest deviation for all cases.
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Figure 8 shows the variation of the contact angle value in terms of λ for the four different droplet
shapes (the domain shown here corresponds to λ in the range of -10 pixels to 10 pixels). Our results are
conclusive; an offset from the true pinning point can result in important differences in the measurement
of the contact angle. In fact, an offset of only five pixels (λ/D0 = 0.02) is enough to produce differences
of up to 19 degrees in the measurement. This miscalculation might be evident and easy to fix on a single
picture, but dynamic systems require the automatic measurement of the contact angle for thousands of
pictures where a plethora of shapes are found. The effect, during the spreading phase (Figure 8b), leads
to a difference of 24 degrees in the measured contact angle for a pinning point that is placed 10 pixels
above its true position. Here, as done in other works, to avoid uncertainty and sharply capture the contact
line, we inclined the camera into a small angle of approximately 2 degrees. Inclining the camera an angle
φ, affects the measurement of θD by altering the projected height (h′). The droplet height and the true
height h are related by h′ = hcos(φ). Consequently, in our experiments, the angle of the camera only
affects the measurement of the contact angle by 0.6%, which is considered negligible in this work.

We conclude this section by noting that the contact line position should be identified within a distance
that is less than 1% of that of the droplet in order to achieve reliable measurements of the contact line.

Fig. 8 Influence of a vertical offset applied to the contact line (of height λ) on the contact angle measure-
ment. The offset is set manually within the Matlab code, from 10 pixels below to 10 pixels above the contact
line. As seen, the measurement of the contact angle is critically dependent on the correct detection of the
contact line.

3.3 Validation

Following our reliability analysis, we used our experiments and technique to test some published results.
The fitting conditions detailed above were used to study the spreading diameter in terms of the Weber
number, which was varied by adjusting the impact speed. Figure 9 summarised the results. Here, the
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spreading diameters d(t) are presented in terms of the dimensionless time t∗ = tU0/D0(from the time of
impact). At early times t∗ < 0.1ms, for hydrophilic substrates, our experiments indicate that substrate
wettability does not significantly affect droplet spreading. As observed by Rioboo et al. (2002), surface
wettability only comes into play at later times (t∗ > 0.5) . In addition, we observe that both the We and
Re numbers affect the maximum spreading diameter dm. Indeed, experiments 4 and 9 have the same We
number as experiments 5 and 10 but Re numbers are approximately four times larger. Our results show
that these differences in Re numbers produce dramatic changes in the dynamics, finding that dm doubles
for the high Re number cases. This difference is also reflected at the contact angle dynamics (Figure 9b).
Furthermore, we note that there are discrepancies in the results from the dripping and the
drop on demand generation methods that have similar We and Re numbers (experiments
1 and 2, and 6 and 7). These discrepancies are due to differences in the on-flight oscillatory
behaviour between droplets generated by DoD or dripping. These differences induce various
oscillatory modes (and/or phases, if they both oscillate at the fundamental mode). It is well
known, for instance, that these oscillations change the âĂŸeffectiveâĂŹ radius of curvature
of the front of the drop, leading to radically different results during splashing (Thoraval
et al. (2013))

Fig. 9 a) Contact diameter d(t) in terms of the dimensionless time. b) Contact angle in terms of the contact line velocity.
For both graphs, hollow symbols represent experiments done on glass and solid symbols on acrylic.

Figure 9b shows the contact angle in terms of the contact line velocity ucl. As described in previous
articles, at the first instants after impact, and near the contact point, the drop is greatly deformed and
the contact angle it is approximately 180 degrees while the top of the droplet remains spherical. At
these early times, the contact line velocity can move at up to ucl = 15 m/s, decreasing rapidly as the
contact angle goes from 180 degrees to a local minimum. Subsequently, as seen in the insert of Figure
9b, the contact angle value reaches a long-lived asymptotic contact angle (θDA) at a contact line velocity
range between 0.5 to 3.0 m/s, (Quetzeri-Santiago et al. (2019b)). Eventually, the contact angle reaches
its equilibrium value within the hysteresis at ucl = 0.0 m/s.

High viscosity droplets, Experiments 5 and 10 in Figure 9, corresponding to µ = 60 mPa s show
substantially different dynamics at low spreading speeds, where a clear local maximum value is visible at
ucl ≈ 0.5 m/s. This is consistent with the results by Vadillo et al. (2009), where an asymptotic contact
angle was observed for low viscosity fluids and a large hysteresis for high viscosity liquids. As highlighted
previously, the dynamic contact angle is the result of the interplay between inertia, capillary and viscous
forces (Vadillo et al. (2009); Yokoi et al. (2009)) where greater capillary and viscous forces imply larger
contact angles. This is well reflected in our results, where hydrophilic substrates, at a given We number,
are associated to large hysteresis and short spreading (small dm). This is in agreement with previous
results where dm has been found to be dependent of the dynamic contact angle dm (Vadillo et al. (2009);
Lee et al. (2016b,a)).

As mentioned in the introduction and in past works, the contact angle is affected by
the substrate properties and the energy dissipation at the contact line. Therefore, following
the approach of Lee et al. (2016a,b), we use the moving contact angle to parametrise the



12 Miguel A. Quetzeri-Santiago et al.

maximum spreading diameter. As argued in previous papers, θDA contains information
about the interplay between viscous and capillary forces acting on the contact line (Šikalo
et al. (2005)). Moreover, the scaling dm ∼We1/4 was found to fit the data for water (Laan et
al. (2014)). Combining these two findings, we propose a scaling of the form dm ∼We1/4fθDA.
Furthermore, our experiments indicate that the larger the viscosity, the larger θDA, and the
smaller dm. In fact, our results indicate that the scaling dm ∼We1/4 alone overpredicts dm for
viscous droplets. In contrast, for θDA < 90 degrees, the scaling underpredict dm. Therefore,
we propose a factor f(θDA) = 1 ± cos2(θDA) in addition to the We1/4 scaling. Here, θDA is
obtained by averaging the dynamic contact angle measurements over the range of 0.25 <
ucl< 3.0 m/s.

Based on these observations and the research of Lee et al. (2016a,b) and de Goede et al. (2019), we
propose a parametrisation of the spreading factor in terms of the contact angle and the Weber number.
This is seen in Figure 10 where we show that dm is a function of the Weber number and the dynamic
contact angle through the scaling,

dm(We, θDA) =

{
We1/4[1− cos2(θDA)], if θDA > 90 degrees
We1/4[1 + cos2(θDA)], if θDA < 90 degrees

(2)

where θDA is the average asymptotic contact angle in the range 0.5 < ucl < 3.0 m/s. As seen in Figure
10, this scaling is also in agreement with the results by Vadillo et al. (2009). Regarding the influence of
the droplet size D0 on the spreading factor dm, we see this effect in experiments 2 and 3, and 7 and 8,
where the droplet size does not to affect dm. We clarify, that our results are limited to droplet sizes in
the millimetre size range so our observation is in agreement with Visser et al. (2015).

Fig. 10 Comparison between the experimentally obtained maximum spreading factor (vertical) and that
obtained from Equation 2 (horizontal axis). The error bars take into account the associated errors on
the measurement of the contact angle, the impact speed, droplet diameter, density, and surface tension.
Additionally, we have included data from Vadillo et al. (2009).

4 Conclusions

This paper presents a discussion of various experimental aspects influencing the measurement of the
contact angle. We found that the length domain and the order of the polynomial fittings are key param-
eters on the reliability of the measurements of the dynamic contact angle. We found that second-order
polynomial fittings produce robust results as they show the lowest standard deviation within other poly-
nomial fittings. Additionally, we found that the optimum domain range for the fittings lies within droplet
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profile lengths equivalent to 4% to 10% of that of the original droplet diameter. In fact, with these
conditions the error in the static contact angle and the dynamic contact angle are 0.6 and
3-5 degrees respectively. We also show that the correct detection of the contact line is critical to the
correct measurement of the contact angle. We argue that our study is important to provide consistency
in the fitting method, especially when contrasting experiments and models.

Under our optimised protocols, we conducted several experiments to assess the relevance of the Weber
and Reynolds numbers on the contact angle and the maximum spreading diameter. We conclude that,
within the impact velocities explored here, the Reynolds number affects both the contact line dynamics
and the maximum spreading diameter and can be parametrised by θDA. Finally, we propose a parametri-
sation including the We number, the contact angle and the spreading factor that is in agreement with
our data and that from Vadillo et al. (2009).
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