

# Phytophthora foliorum sp. nov., a new species causing leaf blight of azalea

# Ryan DONAHOO<sup>a</sup>, Cheryl L. BLOMQUIST<sup>b</sup>, Samantha L. THOMAS<sup>b</sup>, John K. MOULTON<sup>a</sup>, David E. L. COOKE<sup>c</sup>, Kurt Haas LAMOUR<sup>a,\*</sup>

<sup>a</sup>Department of Entomology and Plant Pathology, The University of Tennessee, 2431 Joe Johnson Drive, Rm 205, Ellington Plant Science, Knoxville, TN 37996, USA <sup>b</sup>Department of Food and Agriculture, Plant Pest Diagnostics Branch, 3294 Meadowview Road, Sacramento, California 95832-1448, USA <sup>c</sup>Scottish Crop Research Institute, Invergowrie, Dundee, DD2 5DA, UK

#### ARTICLE INFO

Article history: Received 21 November 2005 Received in revised form 7 June 2006 Accepted 28 July 2006 Published online 25 October 2006 *Corresponding Editor*: Gareth W. Griffith

Keywords: Molecular diagnostics Oomycete

#### ABSTRACT

A previously unknown Phytophthora was recovered more than 60 times from evergreen hybrid azalea leaves collected during surveys for the sudden oak death pathogen Phytophthora ramorum in California and Tennessee. The novel Phytophthora was discovered when genomic DNA from this species cross-reacted with the ITS-based diagnostic PCR primers used to screen plants for the presence of *P. ramorum*. This species had caducous, semi-papillate sporangia, was homothallic with both paragynous and amphigynous antheridia, and was pathogenic on both wounded and intact azalea leaves. Nuclear and mitochondrial sequence data indicate that this species is related to, but distinct from, *P. ramorum*. AFLP analysis indicates that the isolates of this species have limited genotypic diversity and share no markers with *P. ramorum*. This paper presents the formal description of *P. foliorum* as a new species and underscores the need for caution when relying solely on DNA-based diagnostic tools.

© 2006 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.

## Introduction

Commonly called water moulds, more than 60 Phytophthora species have currently been described and are classified in the kingdom Chromista (Yoon et al. 2002; Erwin & Ribeiro 1996). Most Phytophthora species are considered plant pathogens (Cooke et al. 2000; Erwin & Ribeiro 1996). P. ramorum, a recently described species (Werres et al. 2001), has been found to cause oak death in 14 counties of coastal forest in California and in a single county in southern Oregon in the USA. The disease has been detected in nurseries and garden centres in the western USA (Washington, Oregon and California), British Columbia, Canada, as well as in Europe (Hansen et al. 2005). *P. ramorum* is found on several genera of woody nursery stock in Europe (Tooley *et al.* 2004). In response to the concern that *P. ramorum* will move on nursery stock and infect the red oak woodlands of the eastern USA, the United States Department of Agriculture-Animal and Plant Health Protection Service–Plant Protection and Quarantine (USDA-APHIS-PPQ) funded a nationwide survey of nursery stock in 2004 and 2005. New species of *Phytophthora* have been described as a result of this survey and forest survey efforts (Hansen *et al.* 2003; Jung *et al.* 2003). The USDA mandated that a single ITS-based nested PCR test be used the detection of *P. ramorum* in the US national survey. *P. hibernalis*, a close relative of *P. ramorum*, has been previously shown to yield false-positives in this

\* Corresponding author.

E-mail address: klamour@utk.edu

0953-7562/\$ – see front matter © 2006 The British Mycological Society. Published by Elsevier Ltd. All rights reserved. doi:10.1016/j.mycres.2006.07.017

P. ramorum detection assay (Blomquist et al. 2005). As a result of intensive survey efforts in California and Tennessee in 2004 and 2005, a previously undescribed Phytophthora species with distinctly different morphology from P. ramorum was identified. This previously undescribed Phytophthora species produced a false-positive in the P. ramorum detection assay. This paper presents the morphological description of P. foliorum as a new pathogen of azalea, the phylogenetic relationship to other Phytophthora species based on nuclear and mitochondrial DNA sequences, and the intraspecific variation within the species P. foliorum as assessed by AFLP.

# Materials and methods

# Cultures

All isolates used in this study are listed in Table 1. Cultures were obtained from leaf samples submitted during the national survey for the sudden oak death pathogen *Phytophthora ramorum*. Leaf tissue from the edge of foliar lesions

| Table 1 – Phytophthora isolates used in this study |                         |                              |  |  |
|----------------------------------------------------|-------------------------|------------------------------|--|--|
| Isolate                                            | County, State           | Host                         |  |  |
| P. foliorum                                        |                         |                              |  |  |
| 1283844                                            | Alameda, CA             | Rhododendron sp.             |  |  |
|                                                    |                         | (azalea) 'Duc de Rohan'      |  |  |
| 1301442                                            | San Joaquin, CA         | Rhododendron sp.             |  |  |
|                                                    |                         | (azalea) 'Sherwood Red'      |  |  |
| 1367244                                            | Orange, CA              | Rhododendron sp.             |  |  |
|                                                    |                         | (azalea) 'Red Ruffle'        |  |  |
| 1307997                                            | Sonoma, CA              | Rhododendron sp.             |  |  |
|                                                    |                         | (azalea)                     |  |  |
| 1330048                                            | San Mateo, CA           | Rhododendron sp.             |  |  |
|                                                    |                         | (azalea) 'Rose Glow'         |  |  |
| 1314489                                            | Los Angeles, CA         | Rhododendron sp.             |  |  |
|                                                    |                         | (azalea) 'Phoenicia'         |  |  |
| 1307658                                            | Butte, CA               | Rhododendron sp.             |  |  |
|                                                    |                         | (azalea) 'Imperial Princess' |  |  |
| 1267257                                            | Ventura, CA             | Rhododendron sp.             |  |  |
|                                                    |                         | (azalea) 'Fielder's White'   |  |  |
| 1313743                                            | Sacramento, CA          | Rhododendron sp.             |  |  |
|                                                    |                         | (azalea) 'Brilliant'         |  |  |
| LT192ª                                             | Shelby, TN              | Rhododendron sp.             |  |  |
|                                                    |                         | (azalea) 'Pink Ruffles'      |  |  |
| LT1261                                             | Shelby, TN              | Rhododendron sp.             |  |  |
|                                                    |                         | (azalea) 'Pink Ruffles'      |  |  |
| P. cactorum                                        |                         |                              |  |  |
| 1314491                                            | Los Angeles, CA         | Pyracantha koidzumii         |  |  |
|                                                    | -                       | 'Victory'                    |  |  |
| 1342723                                            | Santa Cruz, CA          | Rhamnus californica          |  |  |
| D ramorum                                          |                         |                              |  |  |
| 1000750                                            | Santa Craig CA          | Phododondron on              |  |  |
| 1289/53                                            | Santa Cruz, CA          | (rhododondron)               |  |  |
| 12/1011                                            | Sacromonto CA           | (Induduendron an             |  |  |
| 1541211                                            | Sacramento, CA          | (rhododondron) 'Minnotonka'  |  |  |
|                                                    |                         | (mododenaron) mininetofika   |  |  |
| P. hibernalis                                      |                         |                              |  |  |
| 1330912                                            | Solano, CA              | Camellia 'Ice Follies'       |  |  |
| a Isolate use                                      | ed in pathogenicity exp | periments.                   |  |  |

was plated on corn meal agar, (CMA; Sigma, St Louis, MO) amended with PARP (25 ppm pimaricin, 100 ppm ampicillin, 25 ppm rifampicin and 25 ppm pentachloronitrobenzene) (Erwin & Ribeiro 1996). Cultures were subsequently hyphaltipped to ensure single isolates. Hyphal-tipping was accomplished by growing each culture on water agar and then subculturing a single strand from the expanding margin of the culture. Cultures were incubated in the dark at room temperature for 7-10 d before microscopic examination. Cultures were maintained on CMA-PARP, CMA and V8 agar (V8) and were stored long-term at room temperature at 18 °C as colonized agar discs of V8 and Rye A medium (Caten & Jinks 1968; Erwin & Ribeiro 1996) in sterile water containing two autoclaved hempseeds. Colony morphology, growth rate, and oospore morphology were determined by culturing isolates on CMA, V8 and half-strength potato dextrose (PDA) agar. Cardinal growth temperatures were determined using CMA plates inoculated with a 5mm diam agar plug and incubated in the dark at: 4, 10, 15, 18, 21, 24, and 26  $^{\circ}$ C (n = 3). Isolates of P. cactorum, P. ramorum, and P. hibernalis were also used in temperature growth rate assays for comparison. For oospore production, CMA and V8 plates were placed in the dark at 18 °C for 7-10 d. Oospores were measured using a Nikon Eclipse (E600 Series) microscope. Sporangia were produced by transferring actively growing agar plugs of mycelium to Petri plates containing soil extract water (150 g soil in 1 l deionized water mixed with a stirring bar for 30 min, decanted, and run through a 20 µm filter) and incubated at room temperature overnight both in the light and dark. A representative isolate, LT192, has been selected as holotype and deposited in the American Type Culture Collection (ATCC), and an isotype is included the Phytophthora species collection at the University of California. Riverside.

# Plant inoculations

Initial pathogenicity tests were done to complete Koch's postulates using nursery stock azalea plants 'Pink Ruffles' (courtesy of M. Windham) and Phytophthora foliorum isolate 192. Before inoculations, plants were grown in a greenhouse under ambient lighting in 1 gallon pots containing soil-less potting media (Redi-Gro, Sacramento, CA). Inoculation experiments were conducted in a growth chamber maintained at approximately 22 °C with a 12 h dark/light cycle. Seven millimetre plugs of actively growing mycelium, grown for 7 d on V8 at 22 °C, were adhered by placing the plugs on the under sides of both wounded (n=4) and intact (n=4) newly unfurled leaves. The plants were misted with water and placed into sealed plastic bags for 48 h. Plants were removed from the plastic bags after 48 h and symptom development was monitored daily for two weeks.

# PCR-RFLP and AFLP

Nested PCR amplification was performed as per Davidson *et al.* (2003) and 10  $\mu$ l of the final amplicon from nested PCR was digested with *Hae*III (New England Biolabs, Ipswich, MA) and the restriction profiles were resolved on a 3% NuSieve gel

(Cambrex, Rockland, ME). ITS amplicons (two Phytophthora foliorum and one P. ramorum) were amplified as described above, and  $10 \mu l$  from each reaction was digested separately with AluI (NEB) and MspI (Promega, Madison, WI) according to the manufactures instructions. Ten microlitres of the digested ITS amplicons were resolved on a 3% NuSieve gel (Cambrex, Rockland, ME) run at 20 V for 12 h. Genomic DNA from 11 isolates of P. foliorum and one isolate of P. ramorum was assayed for AFLP markers using EcoRI, MseI restriction enzymes, adapters, and primers as described by Vos et al. (1995). Selective amplifications were done using Eco-AC, Mse-CCC primers, and labelled in separate reactions as described by Habera et al. (2004). Fluorescently labelled products were resolved on a Beckman-Coulter CEQ8000 capillary genetic analysis device (Fullerton, CA, USA) and the fragment profiles edited manually to determine the number of mono- and polymorphic AFLP markers.

#### DNA amplification and sequencing

Mycelium was grown in V8-PARP broth, lyophilized, and genomic DNA was extracted using Qiagen's DNeasy Plant Mini-kit (Valencia, CA). Table 2 lists the primers used for amplification and sequencing. PCR reactions and cycling parameters for the ITS,  $\beta$ -tubulin, translation elongation factor 1 $\alpha$  (EF-1 $\alpha$ ), and cytochrome oxidase (cox) are as described by Cooke *et al.* (2000), Kroon *et al.* (2004), and Martin and Tooley (2003a,b), respectively. PCR products were resolved on 1% agarose gels to verify a single product, cleaned using Qiagen's Qiaquick PCR purification kit, and submitted to the sequencing core facility at the University of Tennessee.

## Phylogenetic analysis

Nucleotide sequences for all other Phytophthora species in this study are listed in Table 3. Sequences from 54 Phytophthora species used in the study of Kroon *et al.* were used in the comparison of the  $\beta$ -tubulin and EF-1 $\alpha$  genes. These included 49 distinct Phytophthora species with multiple isolates of P. infestans, P. mirabilis, and P. fragariae with Pythium aphanidermatum treated as an outgroup (Kroon *et al.* 2004). For phylogenetic analysis of the coxII sequences

from the same 64 taxa used by Martin and Tooley (2003b) were included. These were comprised 30 *Phytophthora* species with multiple taxa represented for several species (Table 2). The ITS sequences used in the publication of Cooke *et al.* (2000), plus additional sequences representing other more recently described species, were downloaded from GenBank and are listed in Table 3.

# Parsimony analysis

We conducted independent phylogenetic analysis of concatenated nuclear, ITS and coxII nucleotides using the parsimony criterion implemented in PAUP 4.0b10 (Swofford 2002). All characters were treated as unordered. Trees were constructed by a heuristic search with tree bisection-reconnection (TBR) branch swapping in a random stepwise addition of taxa repeated 1000 times. Maxtrees was set to increase incrementally. Node support was evaluated by nonparametric BS resampling (Felsentein 1985). BS scores were calculated from 1000 replicates, with each replicate consisting of three searches starting with a tree built by stepwise addition using the simple addition sequence.

#### ML analysis

Phylogenetic trees were also estimated using the ML criterion implemented in PAUP 4.0b10 (Swofford 2002). Nucleotide substitution models for each molecular data set were selected using Modeltest 3.06 (Posada & Crandall 1998). Once a model was selected for a given molecular data set, we used this model and its parameter estimates to search for an optimal ML tree via heuristic searches of tree space using TBR branch swapping in a random stepwise addition of taxa repeated 15 times.

#### **Bayesian** analysis

Bayesian MCMC phylogenetic analysis was conducted using MrBayes 2.01 (Huelsenbeck *et al.* 2001) using the models and parameters suggested for each data matrix by Modeltest. Each Markov chain in the Bayesian search was started from a random tree and run for  $1 \times 106$  cycles, sampling every 1000th cycle from the chain. Four chains were run

| Table 2 – Primers used for amplification and sequencing |         |                                             |                       |  |  |
|---------------------------------------------------------|---------|---------------------------------------------|-----------------------|--|--|
| Target Primer name                                      |         | Sequence                                    | Reference             |  |  |
| ITS                                                     | ITS4    | 5'-TCCTCCGCTTATTGATATGC-3'                  | Cooke et al. 2000     |  |  |
|                                                         | ITS6    | 5'-GAAGGTGAAGTCGTAACAAGG-3'                 |                       |  |  |
| Beta-tubulin (β- <i>tub</i> )                           | TubuF2  | 5'-ACGGCTCGAGGATGACCATG-3' <sup>a</sup>     | Kroon et al. 2004     |  |  |
|                                                         | TubuR1  | 5'-CCTGGTACTGCTGGTACTCAG-3' <sup>a</sup>    |                       |  |  |
| Translation elongation                                  | ElongF1 | 5'-TCACGATCGACATTGCCCTG-3' <sup>a</sup>     |                       |  |  |
| factor 1 alpha (EF-1α)                                  | ElongR1 | 5'-ACGGCTCGAGGATGACCATG-3' <sup>a</sup>     |                       |  |  |
| Cytochrome oxidase                                      | FM75    | 5'-CCTTGGCAATTAGGATTTCAAGAT-3' <sup>a</sup> | Martin & Tooley 2003a |  |  |
| (cox) I and II                                          | FM77    | 5'-CACCAATAAAGAATAACCAAAAATG-3'             |                       |  |  |
|                                                         | FM78    | 5'-ACAAATTTCACTACATTGTCC-3' <sup>a</sup>    |                       |  |  |
|                                                         | FM79    | 5'-GGACAATGTAGTGAAATTTGT-3' <sup>a</sup>    |                       |  |  |
|                                                         | FM80    | 5'-AATATCTTTATGATTTGTTGAAA-3' <sup>a</sup>  |                       |  |  |
| D' 1                                                    |         |                                             |                       |  |  |

a Primers used in sequencing reactions.

| Table 3 – Phytophthora specie                       | s sequence accession                                                                                         | numbers from Gen          | Bank for isolates us | sed in the phyloge   | netic analyses                   |
|-----------------------------------------------------|--------------------------------------------------------------------------------------------------------------|---------------------------|----------------------|----------------------|----------------------------------|
| Phytophthora species                                | Isolate                                                                                                      | GenBank accession numbers |                      |                      |                                  |
|                                                     |                                                                                                              | ITS                       | β-tubulin            | EF-1a                | coxII                            |
| P. alni subsp. multiformis                          | d                                                                                                            | AF139368                  |                      |                      |                                  |
| P. arecae                                           | IMI 348342 <sup>a,c</sup><br>CBS 148.88 <sup>b</sup>                                                         | AF266781                  | AY564049             | AY564105             | AY129176                         |
| P. bisheria                                         | P1.33 <sup>d</sup>                                                                                           | AF408625                  |                      |                      |                                  |
| P. botryose                                         | IMI 136915 <sup>a</sup><br>IMI 136916 <sup>b</sup>                                                           | AF266784                  | AY564051             | AY564107             |                                  |
| P. brassicae                                        | CBS 178.87                                                                                                   | AF380147                  |                      |                      |                                  |
| P. cactorum                                         | IMI 296524 <sup>a</sup><br>P6183 <sup>b</sup><br>311 <sup>c</sup><br>385 <sup>c</sup><br>SB2079 <sup>c</sup> | AF266772                  | AY564052             | AY564108             | AY129178<br>AY129179<br>AY129180 |
| P. cajani                                           | P536 <sup>a</sup>                                                                                            | AF266765                  |                      |                      |                                  |
| P. cambivora                                        | IMI 296831 <sup>a</sup>                                                                                      | AF266763                  |                      |                      |                                  |
| P. capsici                                          | IMI 352321 <sup>a</sup><br>302 <sup>PT</sup>                                                                 | AF266787                  |                      |                      | AY129181                         |
| P. cinnamomi                                        | UQ881 <sup>a</sup><br>Radaci B <sup>b</sup>                                                                  | AF266764                  | AY564054             | AY564110             |                                  |
| var. parvispora                                     |                                                                                                              | AY302184                  |                      |                      |                                  |
|                                                     | Cn-2 <sup>DJM</sup>                                                                                          |                           |                      |                      | AY129182                         |
| P. citricola                                        | IMI 031072"<br>P1817 <sup>b</sup><br>Cr-4 <sup>DJM</sup><br>SB2084                                           | AF266788                  | AY564055             | AY564111             | AY129183<br>AY129184             |
| P. citrophthora                                     | IMI 332632 <sup>a</sup>                                                                                      | AF266785                  |                      |                      |                                  |
|                                                     | CBS 274.33 <sup>b</sup>                                                                                      |                           | AY564056             | AY564112             |                                  |
| P. clandestina                                      | IMI 287317 <sup>a,b</sup>                                                                                    | AJ131989                  | AY564057             | AY564113             |                                  |
| P. colocasiae                                       | IMI 368918 <sup>a,b</sup><br>ATCC 56193 <sup>c</sup><br>P3773 <sup>MC</sup><br>ATCC 52233 <sup>c</sup>       | AF266786                  | AY564058             | AY564114             | AY129185<br>AY129186<br>AY129187 |
| P. cryptogea                                        | IMI 045168 <sup>a</sup>                                                                                      | AF266796                  |                      |                      | AY129188                         |
|                                                     | HR1/ss/pp/99 <sup>b</sup>                                                                                    |                           | AY564059             | AY564115             |                                  |
| P. drechsleri                                       | ATCC 46724 <sup>a,b,c</sup><br>301 <sup>PT</sup>                                                             | AF266798                  | AY564060             | AY564116             | AY129190<br>AY129189             |
| P. erythroseptica                                   | ATCC 36302 <sup>a</sup>                                                                                      | AF266797                  | AVE64061             | AVEC4117             | AY129191                         |
|                                                     | 388 <sup>PT c</sup>                                                                                          |                           | A1304001             | A1304117             | AY129193                         |
| P. europaea                                         | OSU-2 AE2 <sup>d</sup>                                                                                       | AF449491                  |                      |                      |                                  |
| P. fragariae var. rubi                              | CH132 <sup>a</sup>                                                                                           | AF266761                  |                      |                      |                                  |
| P. fragariae var. rubi I                            | FVR67 <sup>b</sup>                                                                                           |                           | AY564064             | AY564120             |                                  |
| P. fragariae var. rubi II<br>P. fragariae var. rubi | FVR30°<br>397 <sup>PT c</sup>                                                                                |                           | AY564065             | AY564121<br>AY129196 |                                  |
| P. fragariae var. fragariae                         | IMI 330736 <sup>a</sup>                                                                                      | AF266762                  |                      | 11125150             |                                  |
| P. fragariae var. fragariae II                      | NS4 <sup>b</sup>                                                                                             |                           | AY564063             | AY564119             |                                  |
| P. fragariae var. fragariae                         | 394 <sup>PT c</sup>                                                                                          |                           |                      |                      | AY129194                         |
| P. fragariae var. fragariae                         | 398 <sup>-1</sup> C                                                                                          | 45966709                  | AVEGADEG             | AVEC4100             | AY129195                         |
| P. gonapodylaes<br>P. aonapodvides                  | 393 <sup>PT c</sup>                                                                                          | AF200795                  | A I 304000           | A1304122             | AY129197                         |
| Phytophthora sp. "O" group                          | P246b <sup>a</sup>                                                                                           | AF266791                  |                      |                      |                                  |
| P. hedraiandra                                      | CBS 111725 <sup>d</sup>                                                                                      | AY707987                  |                      |                      |                                  |
| P. heveae (T)<br>P. hibernalis                      | IMI 180616 <sup>a,b</sup><br>ATCC 64708 <sup>b,c</sup><br>ATCC 56353 <sup>c</sup>                            | AF266770<br>AY564068      | AY564067<br>AY564124 | AY564123             | AY129201<br>AY129199             |
|                                                     | 380 <sup>°</sup>                                                                                             | AY369375                  |                      |                      | A I 129200                       |
| P. humicola                                         | IMI 302303 <sup>a,b</sup>                                                                                    | AF266792                  | AY564069             | AY564125             |                                  |
| P. idaei (T)                                        | IDA3 <sup>a</sup>                                                                                            | AF266773                  |                      |                      |                                  |
|                                                     | IMI 313727 <sup>b</sup>                                                                                      |                           | AY564070             | AY564126             |                                  |

| 1 | .3 | 1 | 3 |
|---|----|---|---|
|   |    |   |   |

| Table 3 (continued)   |                             |                           |                         |               |                   |
|-----------------------|-----------------------------|---------------------------|-------------------------|---------------|-------------------|
| Phytophthora Isolate  | Isolate                     | GenBank Accession numbers |                         |               |                   |
|                       |                             | ITS                       | β-tubulin               | EF-1a         | cox II            |
| P. ilicis             | ILI 1 <sup>a</sup>          | AJ131990                  |                         |               |                   |
|                       | PD91/595°                   |                           | AY5640/1                | AY564127      | 43/100000         |
|                       | 343 <sup></sup>             |                           |                         |               | AY129202          |
| P infectors           | IMI 66006a                  | AF266779                  |                         |               | AT 129205         |
| 1. injesturis         | 176 <sup>PT</sup>           | 111 20077 5               |                         |               | AY129204          |
|                       | 180 <sup>PT</sup>           |                           |                         |               | AY129205          |
|                       | 580 <sup>PT</sup>           |                           |                         |               | AY129206          |
| P. infestans Ia       | Pic99186 <sup>b</sup>       |                           | AY564035                | AY564093      |                   |
| P. infestans IIa      | Dr98004 <sup>b</sup>        |                           | AY564036                | AY564094      |                   |
| P. ipomoeae           | Pic99165 <sup>d</sup>       | AY770742                  |                         |               |                   |
| P. inflata            | IMI 342898 <sup>a,b</sup>   | AF266789                  | AY564072                | AY564128      |                   |
| P. insolita (T)       | IMI 288805 <sup>a,b</sup>   | AF271222                  | AY564073                | AY564129      |                   |
| P. inundata           | P246b <sup>a</sup>          | AF266791                  | 111561074               | 11/5 (1100    |                   |
| P. iranica            | IMI 158964 <sup>4,5</sup>   | AJ131987                  | AY5640/4                | AY564130      |                   |
| P. Ratsurae           |                             | AF200771                  | AVE6407E                | AVEC/101      |                   |
| P lateralis (T)       | IMI 040503 <sup>a,b,c</sup> | AF266804                  | A 1 504075<br>A 7564076 | AY564132      | ATT129207         |
| 1. Iuteruns (1)       | 452 <sup>PT</sup>           | M 200004                  | 111304070               | 11504152      | AY369360          |
|                       | 455 <sup>PT</sup>           |                           |                         |               | AY369361          |
| P. meadii             | IMI 129185 <sup>b</sup>     |                           | AY564077                | AY564133      | 111000001         |
| P. medicaginis        | UQ125 <sup>a</sup>          | AF266799                  |                         |               |                   |
| P. megakarya          | IMI 337104 <sup>a</sup>     | AF266782                  |                         |               |                   |
|                       | IMI 337098 <sup>b</sup>     |                           | AY564078                | AY564134      |                   |
|                       | 327 <sup>PT</sup>           |                           |                         |               | AY129208          |
|                       | 328 <sup>PT</sup>           |                           |                         |               | AY129209          |
| P. megasperma         | IMI 133317 <sup>a,b</sup>   | AF266794                  | AY564079                | AY564135      |                   |
| P. sp. (on asparagus) | UQ2141 <sup>a</sup>         | AF266795                  |                         |               |                   |
| P. melonis            | IMI 325917 <sup>a</sup>     | AF266767                  |                         |               |                   |
| P. mirabilis (T)      | ATCC 64130ª                 | AF266777                  |                         |               | 11400040          |
|                       | ATCC 64070°                 |                           |                         |               | AY129213          |
| P mirchilic I         | Bic00120 <sup>b</sup>       |                           | 47264029                | 47264005      | A 1 129214        |
| P. mirabilis I        | P3001 <sup>b</sup>          |                           | AV564039                | AV564095      |                   |
| P mirabilis IV        | G4-4 <sup>b</sup>           |                           | AY564041                | AY564098      |                   |
| P. mirabilis V        | G15-4 <sup>b</sup>          |                           | AY564042                | AY564099      |                   |
| P. multivesiculata    | CBS 545.96 <sup>a,b</sup>   | AF266790                  | AY564080                | AY564136      |                   |
| P. nicotianae         | UQ848 <sup>a</sup>          | AF266776                  |                         |               |                   |
|                       | P582 <sup>b</sup>           |                           | AY564081                | AY564137      |                   |
|                       | Pn-17 <sup>DJM c</sup>      |                           |                         |               | AY129215          |
|                       | 322 <sup>PT</sup>           |                           |                         |               | AY129216          |
| P. niederhauseii      | PPIL.01.5112 <sup>d</sup>   | AY550916                  |                         |               |                   |
| P. nemorosa           | 482 <sup>PT</sup>           | AY332654                  |                         |               | AY429504          |
|                       | 483 <sup>P1</sup>           |                           |                         |               | AY429505          |
| P. pistaciae          | PIS15 <sup>a</sup>          | AF403506                  |                         |               |                   |
| P. paimivora          | UQ1249 <sup>a</sup>         | AF266780                  | 1375 ( 1000             | 4375 6 44 9 9 |                   |
|                       | CBS 236.30°                 |                           | AY 564082               | AY564138      | 43/100017         |
|                       | 329<br>סן ג <sup>DJM</sup>  |                           |                         |               | AY 129217         |
|                       | Pl-10 <sup>DJM c</sup>      |                           |                         |               | AV129210          |
|                       | Pl-14 <sup>DJM c</sup>      |                           |                         |               | AY129220          |
| P. phaseoli           | ATCC 60171 <sup>a,b</sup>   | AF266778                  | AY564044                | AY564101      |                   |
| I                     | 330 <sup>PT</sup>           |                           |                         |               | AY129221          |
| P. porri              | CBS 782.97 <sup>a</sup>     | AF266801                  |                         |               |                   |
| P. primulae           | CBS 620.97 <sup>a</sup>     | AF266802                  |                         |               |                   |
| P. pseudosyringae     | 484 <sup>PT c</sup>         |                           |                         |               | AY429506          |
|                       | 485 <sup>PT</sup>           |                           |                         |               | AY429507          |
|                       | 470 <sup>PT</sup>           |                           |                         |               | AY369357          |
|                       | 471 <sup>PT</sup>           |                           |                         |               | AY369358          |
|                       | 473 <sup>r1</sup>           | AY369374                  |                         |               | AY369359          |
| P. pseudotsugae       | IMI 331662 <sup>a,b</sup>   | AF266774                  | AY564084                | AY564140      | 11/100000         |
| r. pseudotsugae       | 308                         |                           |                         |               | AY129222          |
|                       |                             |                           |                         | (contin       | ued on next page) |

|                           |                         |          | Genibulik Heee        | ssion numbers |          |
|---------------------------|-------------------------|----------|-----------------------|---------------|----------|
|                           |                         | ITS      | $\beta$ -tubulin      | EF-1a         | cox II   |
| P. psychrophila           | IFB-PSY 2 <sup>d</sup>  | AF449494 |                       |               |          |
| P. quercina (T)           | QUE4 <sup>a</sup>       | AJ131986 |                       |               |          |
| P. richardiae             | IMI 340618 <sup>a</sup> | AF271221 |                       |               |          |
|                           | CBS 240.30 <sup>b</sup> |          | AY564086              | AY564142      |          |
| P. ramorum                | PD93/51 <sup>b</sup>    |          | AY564092              | AY564149      |          |
|                           | Prg-2 <sup>PT c</sup>   |          |                       |               | AY369365 |
|                           | 016 <sup>DR c</sup>     |          |                       |               | AY369362 |
|                           | 013 <sup>DR c</sup>     |          |                       |               | AY369363 |
|                           | Coen <sup>TT c</sup>    |          |                       |               | AY369364 |
|                           | 20315247                | AY616757 |                       |               |          |
| P. sinensis (T)           | ATCC 46538 <sup>a</sup> | AF266768 |                       |               |          |
| .,                        | P1475 <sup>b</sup>      |          | AY564087              | AY564143      |          |
| P. sojae                  | UQ1200 <sup>a</sup>     | AF266769 |                       |               |          |
|                           | P6497 <sup>b</sup>      |          | AY564047              | AY564104      |          |
|                           | ATCC 48068 <sup>b</sup> |          |                       |               | AY129223 |
| P. syringae               | IMI 296829 <sup>a</sup> | AF266803 |                       |               |          |
| , ,                       | IMI 045169 <sup>b</sup> |          | AY564088              | AY564144      |          |
|                           | 442 <sup>PT c</sup>     |          |                       |               | AY129224 |
|                           | 468 <sup>PT c</sup>     |          |                       |               | AY369366 |
|                           | 469 <sup>PT c</sup>     |          |                       |               | AY369367 |
| P. sp. (on spathiphyllum) | c                       |          | AY564091              | AY564147      |          |
| P. tentaculata            | CBS 552.96 <sup>a</sup> | AF266775 |                       |               |          |
| P. trifolii               | UQ2143 <sup>a</sup>     | AF266800 |                       |               |          |
| P. tropicalis             | H352 <sup>d</sup>       | AY208125 |                       |               |          |
|                           | AN97/86 <sup>b</sup>    |          | AY564046              | AY564103      |          |
| P. uliginosa              | IFB-ULI 1 <sup>d</sup>  | AF449495 |                       |               |          |
| P. vignae                 | UO136 <sup>a</sup>      | AF266766 |                       |               |          |
|                           | CBS 241.73 <sup>b</sup> |          | AY564090              | AY564146      |          |
| Pythium aphanidermatum    |                         |          | AY564048 <sup>b</sup> |               |          |

b isolate number and accession obtained from Kroon et al. (2004).

c  $\,$  Isolate number and accession obtained from Martin & Tooley (2003b).

d Isolate number and accession obtained directly from GenBank.

(T), ex-type culture.

simultaneously, three 'hot' and one 'cold'. Each simulation was run twice. We used the default settings for the priors on the rate matrix (0–100), branch lengths (0–10), and proportion of invariant sites (0–1). Stationarity (of the sum of the natural log of the likelihoods of the trees in each of the four chains weighted according to the temperatures of the chains) was evaluated by monitoring likelihood values graphically. The initial 100 trees in each run

were discarded as 'burn-in'. The remaining trees were used to construct majority rule consensus trees. Bayesian PPs for each clade were derived from trees remaining after the discarding the burn-in samples. For ease of visual comparison to BS values, we present these probabilities as whole numbers ranging from 0–100. PPs greater than or equal to 95% are generally regarded as strong support for a clade's existence (Wilcox *et al.* 2002).



Fig 1 – Lesions produced on the leaves of azalea cv. 'Pink Ruffles' 3 d following wounded (A) and not wounded (B) inoculations with Phytophthora foliorum.



Fig 2 – Oospores produced by isolates of Phytophthora foliorum. Both paragynous (top left) and amphigynous (top right) antheridial attachments were observed. Sporangia of Phytophthora foliorum born terminally on the sporangiophore C, and are ovoid, semi-papillate, with a short pedicle D. Bar = 10  $\mu$ m for A, B, D.

# Results

#### Isolates and pathogenicity

More than 60 isolates of *Phytophthora foliorum* were recovered from leaf samples of azalea collected in California and





Tennessee during P. ramorum surveys in the summer of 2004 and winter of 2005. P. foliorum was isolated from the margin of brown leaf spots and healthy tissue. Inoculation experiments to complete Koch's postulates with 'Pink Ruffles' and P. foliorum isolate 192 resulted in lesions similar to those seen on naturally-infected plants. Artificially-wounded leaves developed lesions at a faster rate than non-wounded leaves (Fig 1). P. foliorum was isolated from the margins of expanding lesions on both wounded and not wounded leaves after 14 d.

Oospores were produced in culture after 7 d on CMA-PARP, CMA, and V8-PARP and V8 agar plates. Oospore width ranged from 28.2–38.2  $\mu$ M and averaged 33  $\mu$ M (n = 120). Antheridia were generally paragynous and attached to the oogonia next to the oogonial stalk (Fig 2). Sporangia were not produced on any of the media tested. Sporangia proved to be difficult to stimulate and were only observed in soil extract water. The sporangia are borne terminally on the sporangiophore, and are caducous, ovoid, and semi-papillate (Fig 2). P. foliorum was able to grow at temperatures ranging from 4–28 °C (Fig 3). Isolates exhibited a stressed growth response of sectoring on all media at temperatures greater than 24 °C. Growth on V8 and CMA was appressed whereas on PDA, growth was aerial and cottony (Fig 4). The optimum temperature for P. foliorum growth in culture is 21-22 °C. At this temperature isolates grew  $\sim$  3 mm d<sup>-1</sup>. P. foliorum resembled P. cactorum in culture, but in culture P. cactorum is distinguished from P. foliorum by



Fig 4 – Growth of Phytophthora foliorum on various media at different temperatures. Rows: A = 10 °C; B = 18 °C; C = 27 °C.



Fig 5 – Amplicons and HaeIII restriction profiles from the second amplification reaction of the nested PCR protocol for the detection of Phytophthora ramorum. Lanes 1 and, 2: DNA from P. ramorum-infected Umbellularia californica; Lanes 3–10: DNA from P. foliorum-infected azaleas; Lanes11,12: DNA from P. hibernalis-infected rhododendron. Odd numbered lanes are undigested PCR amplicons. Even numbered lanes are HaeIII digests of amplicons in the previous lane. Lane 13: size standards.



Fig 6 – Restriction digests of the ITS ribosomal DNA region using A, Alu1 and B, Msp1 for Phytophthora foliorum (1, 2) and P. ramorum (3). L = 100 bp ladder.

its rapid growth at higher temperatures (i.e., >24 °C) and production of sporangia (Erwin & Ribeiro 1996). P. foliorum is morphologically somewhat similar to P. syringae in culture, yet is distinguishable by sporangia being cauducous and born terminally, whereas for P. syringae sporangia are persistent, and form in succession in a close monochasial sympodium formation (Erwin & Ribeiro 1996). At all temperatures, P. foliorum had a greater growth rate than P. ramorum and P. hibernalis. P. foliorum isolates grew faster in total darkness than with a photoperiod. The growth rate of isolates on CMA at 21 °C was found to be reduced by 60 % when isolates were exposed daily to a 12 h photoperiod (data not shown).

# Nested PCR and PCR-RFLP

Azaleas and rhododendrons naturally infected with Phytophthora foliorum and P. hibernalis, respectively, produced amplicons in the second amplification step of the PCR assay that co-migrated with the P. ramorum amplicon on Nusieve 3:1 agarose gels (Fig 5). These amplicons tended to be less bright when compared with P. ramorum bands and not always reproducible. HaeIII digestion of the amplicons easily distinguished the three species (Fig 5). Likewise, restriction digests of the ITS amplicons generated from pure culture genomic DNA when cut with AluI resulted in one clearly resolved polymorphic fragment, whereas digestion with MspI resulted in identical restriction profiles (Fig 6).

#### Genotypic and phylogenetic analysis

# AFLP

Thirteen reproducible AFLP markers were generated using the described AFLP primers. No polymorphisms were present among the 11 Phytophthora foliorum isolates, suggesting limited genotypic diversity in this new species (Table 1, Fig 7). A comparison of *P. ramorum* with *P. foliorum* using the same primer combination indicated that they have no markers in common (Fig 7).

#### Phylogenetic analysis

Phylogenetic analysis of the concatenated nuclear genes  $\beta$ -tubulin–EF-1 $\alpha$ , the coxII mitochondrial gene, and ITS regions shows that Phytophthora foliorum is closely related to, but distinct from, P. ramorum, P. lateralis, and P. hibernalis (Figs 8–10). P. foliorum is consistently placed towards the base of the clade containing P. hibernalis, P. lateralis and P. ramorum, although its exact position varies slightly depending on the sequences examined. The concatenated  $\beta$ -tubulin–EF-1 $\alpha$  sequences suggest that P. foliorum shares its most recent common ancestor with P. hibernalis, with these two species found basal to the group containing P. ramorum and P. lateralis (Fig 8). The coxII phylogeny places P. foliorum closest to P. hibernalis but basal to P. hibernalis, P. lateralis, and P. ramorum (Fig 9). The ML phylogeny based on ITS regions places P. foliorum closest to P. ramorum yet basal to P. hibernalis and P. lateralis (Fig 10).



Fig 7 – Electropherograms showing fluorescently labelled AFLP markers for (A) Phytophthora ramorum, and (B–D) isolates of P. foliorum. Profiles were generated using the selective primer pair E-AC/M-CCC and resolved on a Beckman CEQ 8000 genetic analysis platform. No clearly resolved fragments are shared between the two species.



Fig 8 – Phylogenetic tree showing the relationship of Phytophthora foliorum within the genus Phytophthora based on concatenated  $\beta$ -tubulin–EF-1 $\alpha$  sequences. Tree topology based on ML criteria. MP BS scores and Bayesian PPs are shown above and below nodes, respectively, of clades containing the inferred closest relatives of P. foliorum.

### Taxonomy

Phytophthora foliorum Donahoo & Lamour, sp. nov.

Etym.: foliorum refers to pathogenicity on leaves.

Species homothallica, oosporas in cultura procerans; oogoniis in medio 33 µm; antheridias paragynis. Sporangiis semipapillatis, in medio 51  $\times$  34 µm. Sporangiis saepe deciduis, cum pedicellulo

brevi (<5–20  $\mu m$ ). Temperaturae optima 18–22 °C. Incrementum diurnum radiale 3 mm in agaro V8 ad 20 °C.

Typus: **USA**: Tennessee: isol. ex Azalea 'Pink Ruffles' in nursery, May 2004, K. Lamour 192 (ATCC MYA-3638 — holotypus).

Species homothallic; oospores abundantly produced in culture. Oogonia not ornamented, 37  $\mu$ m average diam (32–43  $\mu$ m range). Oospores plerotic, spherical, 33  $\mu$ m average diam (range 28–38  $\mu$ m). Antheridia mostly paragynous and usually attached to the oogonia next to the oogonial



Fig 9 – Phylogenetic tree showing the relationship of Phytophthora foliorum within the genus Phytophthora based on coxII sequences. Tree topology based on ML criteria. MP BS scores and Bayesian PPs are shown above and below nodes, respectively, of clades containing the inferred closest relatives of P. foliorum.

stalk. Growth on CMA between 3–28 °C. Sporangia are semipapillateand are on average  $51 \times 34 \,\mu$ m. Sporangia are deciduous with short pedicels (<5–20  $\mu$ m). Optimum growth at 18–22 °C at a rate of 3 mm d<sup>-1</sup> on V8 agar. No chlamydospores produced. Sporangia were only produced in soil extract water and rarely, if ever, are produced in culture.

# Discussion

This is the first report of Phytophthora foliorum sp. nov., a pathogen of azalea. P. foliorum belongs to group III of the Waterhouse classification based on morphological characteristics (Waterhouse 1963; Erwin & Ribeiro 1996). Morphologically, P. foliorum



0.01 substitutions/site

Fig 10 – Phylogenetic tree showing the relationship of Phytophthora foliorum within the genus Phytophthora based on ITS sequences. Tree topology based on ML criteria. MP BS scores and Bayesian PPs are shown above and below nodes, respectively, of clades containing the inferred closest relatives of P. foliorum.

is distinct from its sister taxa (P. ramorum, P. lateralis, and P. hibernalis). P. foliorum differs from P. ramorum in that it is homothallic and rarely if ever produces sporangia in culture. P. foliorum differs from P. lateralis in that it has semi-papillate sporangia. Unlike P. lateralis and P. ramorum, P. foliorum has not been found to produce chlamydospores. P. foliorum was discovered simultaneously in California and Tennessee during state and national surveys to detect the sudden oak death pathogen P. ramorum. Koch's postulates were completed to confirm pathogenicity on azalea. To date there has not been significant azalea mortality attributed to P. foliorum and this species has only been found causing leaf spot symptoms on azalea.

P. ramorum is a pathogen that warrants quarantine of infected plants. A nested PCR assay designed to amplify a unique portion of the P. ramorum ITS is one of the assays that has been used to screen plant material. Alignment of the outer and inner P. ramorum nested PCR primers with the P. foliorum ITS sequence indicates that the corresponding sequences differ by one to two bases for each of the primers in the first and second rounds of PCR. Cross-reactivity of this newly-described species illustrates one of the risks in using DNA-based diagnostics as the sole means of detecting a specific pathogen. Short of subsequent restriction digest on the resulting nested amplicon the current P. ramorum nested PCR detection assay can lead to false-positives and the unnecessary destruction of nursery stock thought to be infested with P. ramorum. Ideally, cultures should be examined to corroborate DNA-based diagnostic finding with morphological characteristics.

AFLP genotyping indicated that the isolates of *P*. foliorum recovered thus far in the USA have limited genotypic variability (lack of polymorphic fragments). These results are expected with a homothallic species. In comparison with *P*. ramorum, *P*. foliorum generated more markers overall (11 versus four), all of which are unique to *P*. foliorum.

Inconsistencies in phylogenies have been found within the genus Phytophthora depending on the molecular region, and the analysis method used (Kroon et al. 2004; Martin & Tooley 2003a,b). To place P. foliorum in a current phylogenetic context, we reconstructed the molecular phylogenies of Kroon et al., Martin & Tooley, and Cooke et al. with the inclusion of P. foliorum (Kroon et al. 2004; Martin & Tooley 2003a,b; Cooke et al. 2000). In all three phylogenies, similar topologies were observed revealing that P. foliorum shares a common ancestor with P. ramorum, P. hibernalis and P. lateralis. While the topology of the concatenated β-tubulin–EF-1α nuclear genes is similar to the coxII and ITS trees, BS support and PP clade credibility are lacking for P. foliorum's placement in relation to P. hibernalis (Fig 8). Similarly, lack of BS support was observed throughout the clade containing P. foliorum in the coxII phylogeny, and in the case of P. foliorum PPs were also low (Fig 9). The ITS phylogeny places P. foliorum basal to the clade containing the previously mentioned sister taxa (P. ramorum, P. lateralis, and P. hibernalis) with reasonable support (Fig 10). In total, these results show that P. foliorum is a unique species and unlikely a hybrid of two currently known species. All of the species closely related to P. foliorum, with exception of P. ramorum, are homothallic supporting the conclusion reached by other investigators that homo versus heterothallism is not a useful characteristic for inferring evolutionary relatedness.

The origin of *P. foliorum* is not known. At this juncture the threat it may pose to the horticultural industry or natural ecosystems is unclear and further research is needed to assess potential impacts. In particular, the origin, host range, and survivability in natural ecosystems needs to be further elucidated.

# Acknowledgements

We thank Frank Martin for excellent advice and use of his data for phylogenetic analysis and Mark Windham for

providing plants for inoculation tests. We would like to acknowledge Ledare Finley and Marinell Soriano for their excellent technical assistance and Anni Self from the Tennessee Department of Agriculture for managing the collection and pre-screening of nursery samples in Tennessee.

#### REFERENCES

- Blomquist C, Irving T, Osterbauer N, Reeser P, 2005. Phytophthora hibernalis: a new pathogen on Rhododendron and evidence of cross amplification with two PCR detection assays for Phytophthora ramorum. Online. Plant Health Progress doi:10.1094/ PHP-2005-0728-01-HN.
- Caten CE, Jinks JL, 1968. Spontaneous variability of single isolates of Phytophthora infestans I. Cultural variation. Canadian Journal of Botany **46**: 329–348.
- Cooke DEL, Drenth A, Duncan JM, Wagels G, Brasier CM, 2000. A molecular phylogeny of Phytophthora and related Oomycetes. Fungal Genetics and Biology **30**: 17–32.
- Davidson JM, Werres S, Garbelotto M, Hansen EM, Rizzo DM, 2003. Sudden oak death and associated diseases caused by Phytophthora ramorum. Online. Plant Heath Progress doi:10.1094/ PHP-2003-0703-01-DG.
- Erwin DC, Ribeiro OK, 1996. Phytophthora Diseases Worldwide. APS Press, American Phytopathology Society, St Paul, MN.
- Habera L, Smith N, Donahoo R, Lamour K, 2004. Use of a single primer to fluorescently label selective amplified fragment length polymorphism reactions. Biotechniques 37: 902–904.
- Hansen EM, Parke JL, Sutton W, 2005. Susceptibility of Oregon forest trees and shrubs to Phytophthora ramorum: a comparison of artificial inoculation and natural infection. Plant Disease **89**: 63–70.
- Hansen EM, Reeser PW, Davidson JM, Garbelotto M, Ivors K, Douhan L, Rizzo DM, 2003. Phytophthora nemorosa, a new species causing cankers and leaf blight of forest trees in California and Oregon USA. Mycotaxon 138: 129–138.
- Huelsenbeck JP, Ronquist F, Nielsen R, Bollback JP, 2001. Bayesian inference on phylogeny and its impact on evolutionary biology. Science **294**: 2310–2314.
- Jung T, Nechwatal J, Cooke DEL, Hartmann G, Blaschke M, Obwald WF, Duncan JM, Delatour C, 2003. Phytophthora pseudosyringae sp. nov., a new species causing root and collar rot of deciduous tree species in Europe. Mycological Research 107: 772–789.
- Kroon LPNM, Bakker FT, van den Bosch GBM, Bonants PJM, Flier WG, 2004. Phylogenetic analysis of Phytophthora species based on mitochondrial and nuclear DNA sequences. Fungal Genetics and Biology 41: 766–782.
- Martin FN, Tooley PW, 2003a. Phylogenetic relationships among Phytophthora species inferred from sequence analysis of mitochondrially encoded cytochrome oxidase I and II genes. Mycologia **95**: 269–284.
- Martin FN, Tooley PW, 2003b. Phylogenetic relationships of Phytophthora ramorum, P. nemorosa, and P. pseudosyringae, three species recovered from areas in California with sudden oak death. Mycological Research **107**: 1379–1391.
- Posada D, Crandall K, 1998. MODELTEST: testing the model of DNA substitution. *Bioinformatics* 14: 817–818.
- Tooley PW, Kyde KL, Englander L, 2004. Susceptibility of selected ericaceous ornamental host species to Phytophthora ramorum. Plant Disease **88**: 993–999.
- Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M, 1995. AFLP: a new

technique for DNA fingerprinting. Nucleic Acids Research **23**: 4407–4414.

- Waterhouse GM, 1963. Key to the species of Phytophthora de Bary. Mycological Papers **92**: 1–22.
- Werres S, Marwitz R, Man In't Veld W, De Cock A, Bonants P, De Weerdt M, Ilieva E, Baayen P, 2001. Phytophthora ramorum sp. nov., a new pathogen on rhododendron and viburnum. Mycological Research 105: 1155–1165.
- Wilcox TP, Zwickl DJ, Heath TA, Hillis DM, 2002. Phylogenetic relationships of the dwarf boas and a comparison of Bayesian and bootstrap measures of
- phylogenetic support. Molecular Phylogenetics and Evolution **25**: 361–371.
- Yoon HS, Hackett JD, Pinto G, Bhattacharya D, 2002. The single, ancient origin of chromist plastids. PNAS **99**: 15507–15512.