722 research outputs found
Use of High-resolution WRF Simulations to Forecast Lightning Threat
Recent observational studies have confirmed the existence of a robust statistical relationship between lightning flash rates and the amount of large precipitating ice hydrometeors in storms. This relationship is exploited, in conjunction with the capabilities of recent forecast models such as WRF, to forecast the threat of lightning from convective storms using the output fields from the model forecasts. The simulated vertical flux of graupel at -15C is used in this study as a proxy for charge separation processes and their associated lightning risk. Six-h simulations are conducted for a number of case studies for which three-dimensional lightning validation data from the North Alabama Lightning Mapping Array are available. Experiments indicate that initialization of the WRF model on a 2 km grid using Eta boundary conditions, Doppler radar radial velocity and reflectivity fields, and METAR and ACARS data yield the most realistic simulations. An array of subjective and objective statistical metrics are employed to document the utility of the WRF forecasts. The simulation results are also compared to other more traditional means of forecasting convective storms, such as those based on inspection of the convective available potential energy field
‘Belonging’. ‘Patients' experiences of social relationships during pulmonary rehabilitation
rehabilitatio
Infrared Imaging of Capella with the IOTA Closure Phase Interferometer
We present infrared aperture synthesis maps produced with the upgraded IOTA
interferometer. Michelson interferograms on the close binary system Capella
(Alpha Aur) were obtained in the H-band between 2002 November 12 and 16 using
the IONIC3 beam combiner. With baselines of 15m < B < 38m, we were able to
determine the relative position of the binary components with milliarcsecond
(mas) precision and to track their movement along the approx. 14 degree arc
covered by our observation run. We briefly describe the algorithms used for
visibility and closure phase estimation. Three different Hybrid Mapping and
Bispectrum Fitting techniques were implemented within one software framework
and used to reconstruct the source brightness distribution. By dividing our
data into subsets, the system could be mapped at three epochs, revealing the
motion of the stars. The precise position of the binary components was also
determined with model fits, which in addition revealed I_Aa/I_Ab=1.49 +/- 0.10
and apparent stellar uniform-disk (UD) diameters of Theta_Aa=8.9 +/- 0.6 mas
and Theta_Ab=5.8 +/- 0.8 mas.
To improve the u, v-plane coverage, we compensated this orbital motion by
applying a rotation-compensating coordinate transformation. The resulting
model-independent map with a beam size of 5.4 x 2.6 mas allows the resolution
of the stellar surfaces of the Capella giants themselves.Comment: Accepted by the Astronomical Journal (2005-03-21
Deformation of Small Compressed Droplets
We investigate the elastic properties of small droplets under compression.
The compression of a bubble by two parallel plates is solved exactly and it is
shown that a lowest-order expansion of the solution reduces to a form similar
to that obtained by Morse and Witten. Other systems are studied numerically and
results for configurations involving between 2 and 20 compressing planes are
presented. It is found that the response to compression depends on the number
of planes. The shear modulus is also calculated for common lattices and the
stability crossover between f.c.c.\ and b.c.c.\ is discussed.Comment: RevTeX with psfig-included figures and a galley macr
Numerical observation of non-axisymmetric vesicles in fluid membranes
By means of Surface Evolver (Exp. Math,1,141 1992), a software package of
brute-force energy minimization over a triangulated surface developed by the
geometry center of University of Minnesota, we have numerically searched the
non-axisymmetric shapes under the Helfrich spontaneous curvature (SC) energy
model. We show for the first time there are abundant mechanically stable
non-axisymmetric vesicles in SC model, including regular ones with intrinsic
geometric symmetry and complex irregular ones. We report in this paper several
interesting shapes including a corniculate shape with six corns, a
quadri-concave shape, a shape resembling sickle cells, and a shape resembling
acanthocytes. As far as we know, these shapes have not been theoretically
obtained by any curvature model before. In addition, the role of the
spontaneous curvature in the formation of irregular crenated vesicles has been
studied. The results shows a positive spontaneous curvature may be a necessary
condition to keep an irregular crenated shape being mechanically stable.Comment: RevTex, 14 pages. A hard copy of 8 figures is available on reques
Finite Size Scaling and Critical Exponents in Critical Relaxation
We simulate the critical relaxation process of the two-dimensional Ising
model with the initial state both completely disordered or completely ordered.
Results of a new method to measure both the dynamic and static critical
exponents are reported, based on the finite size scaling for the dynamics at
the early time. From the time-dependent Binder cumulant, the dynamical exponent
is extracted independently, while the static exponents and
are obtained from the time evolution of the magnetization and its higher
moments.Comment: 24 pages, LaTeX, 10 figure
A Model for the Elasticity of Compressed Emulsions
We present a new model to describe the unusual elastic properties of
compressed emulsions. The response of a single droplet under compression is
investigated numerically for different Wigner-Seitz cells. The response is
softer than harmonic, and depends on the coordination number of the droplet.
Using these results, we propose a new effective inter-droplet potential which
is used to determine the elastic response of a monodisperse collection of
disordered droplets as a function of volume fraction. Our results are in
excellent agreement with recent experiments. This suggests that anharmonicity,
together with disorder, are responsible for the quasi-linear increase of
and observed at .Comment: RevTeX with psfig-included figures and a galley macr
Hypersensitivity pneumonitis: an overlooked cause of cough and dyspnea.
Hypersensitivity pneumonitis (HP) is an immune-mediated pulmonary disorder involving inflammation of the lung interstitium, terminal bronchioles, and alveoli caused by the immune response to the inhalation of an offending environmental airborne agent. It can manifest as exertional dyspnea, fatigue, weight loss, and progressive respiratory failure if left untreated. Because of its protean features, it can be misdiagnosed as other common obstructive lung conditions such as asthma. If triggers are not avoided, it can progress to irreversible pulmonary fibrosis. In this article, we present the case of a 51-year-old male who presented to our hospital with recurrent bouts of dyspnea and cough, initially diagnosed as an asthma exacerbation. He received a final diagnosis of HP after investigation of his workplace revealed airborne spores and surface molds from multiple fungal species, serology revealed eosinophilia, and computed tomography showed bronchiectasis. Avoidance of occupational exposure resulted in significant improvement of his respiratory symptoms after two months
LLiST - a new star tracker camera for tip-tilt correction at IOTA
The tip-tilt correction system at the Infrared Optical Telescope Array (IOTA)
has been upgraded with a new star tracker camera. The camera features a
backside-illuminated CCD chip offering doubled overall quantum efficiency and a
four times higher system gain compared to the previous system. Tests carried
out to characterize the new system showed a higher system gain with a lower
read-out noise electron level. Shorter read-out cycle times now allow to
compensate tip-tilt fluctuations so that their error imposed on visibility
measurements becomes comparable to, and even smaller than, that of higher-order
aberrations.Comment: To be published in "New Frontiers in Stellar Interferometry", W. A.
Traub, ed., SPIE Proceedings Series, Vol. 5491, paper [5491-126]; 10 pages, 6
figures, 1 table; Latex spie class, uses packages graphicx and url; bib style
spiebib; keywords: interferometry, tip-tilt correctio
Why Effective Medium Theory Fails in Granular Materials
Experimentally it is known that the bulk modulus, K, and shear modulus, \mu,
of a granular assembly of elastic spheres increase with pressure, p, faster
than the p^1/3 law predicted by effective medium theory (EMT) based on
Hertz-Mindlin contact forces. To understand the origin of these discrepancies,
we perform numerical simulations of granular aggregates under compression. We
show that EMT can describe the moduli pressure dependence if one includes the
increasing number of grain-grain contacts with p. Most important, the affine
assumption (which underlies EMT), is found to be valid for K(p) but breakdown
seriously for \mu(p). This explains why the experimental and numerical values
of \mu(p) are much smaller than the EMT predictions.Comment: 4 pages, 5 figures, http://polymer.bu.edu/~hmaks
- …