7,691 research outputs found

    High temperature polymer from maleimide-acetylene terminated monomers

    Get PDF
    Thermally stable, glassy polymeric materials were prepared from maleimide-acetylene terminated monomeric materials by several methods. The monomers were heated to self-polymerize. The A-B structure of the monomer allowed it to polymerize with either bismaleimide monomers/oligomers or bis-acetylene monomers/oligomers. Copolymerization can also take place by mixing bismaleimide and bisacetylene monomers/oligomers with the maleimide-acetylene terminated monomers to yield homogenous glassy polymers

    Crosslinked polyimides prepared from N-(3-ethynylphenyl)maleimide

    Get PDF
    The compound N-(3-ethynylphenyl)maleimide (NEPMI) was used to prepare thermally stable, glassy polyimides which did not exhibit glass transition temperatures below 500 C. NEPMI was blended with the maleimide of methylene dianiline (BMI) and heated to form the polyimide. NEPMI was also mixed with Thermid 600 R, a commercially available bisethynyl oligomeric material, and heated to form a thermally stable, glassy polyimide. Lastly, NEPMI was blended with both BMI and Thermid 600 R to form thermally stable, glassy polyimides

    Soluble aromatic polyimides for film and coating applications

    Get PDF
    Linear all-aromatic polyimides have been synthesized and characterized which show much potential as films and coatings for electronic applications. Structure-property relations with regard to methods for obtaining solubility of fully imidized polymers will be discussed. Methods used to obtain solubility include variation of polymer molecular structure, variation of isomerism of the diamine monomer, modification of cure time/temperature and atmosphere. Other properties of soluble polyimides will be presented which include glass transition temperatures, thermooxidative stabilities, UV-visible spectra, and refractive indices

    Polyimides prepared from 3,5-diamino benzo trifluoride

    Get PDF
    High performance, thermooxidatively stable polyimides are prepared by reacting aromatic diamines with pendant trifluoromethyl groups and dianhydrides in an amide solvent to form a poly(amic acid), followed by cyclizing the poly(amic acid) to form the corresponding polyimide

    Aromatic polyimides containing a dimethylsilane-linked dianhydride

    Get PDF
    A high-temperature stable, optically transparent, low dielectric aromatic polyimide is prepared by chemically combining equimolar quantities of an aromatic dianhydride reactant and an aromatic diamine reactant, which are selected so that one reactant contains at least one Si(CH3)2 group in its molecular structure, and the other reactant contains at least one -CF3 group in its molecular structure. The reactants are chemically combined in a solvent medium to form a solution of a high molecular weight polyamic acid, which is then converted to the corresponding polyimide

    A Process for Preparing 1,3-Diamino-5-Pentafluorosulfanylbenzene and Polymers Therefrom

    Get PDF
    Diamines have shown their utility in the formation of many polymers. Examples of these polymers include polyimides, polyamides, and epoxies. The properties of these polymers are often dependent on the diamine which is used to make the polymer. By the present invention, a process was developed to make a diamine containing pentafluorosulfanylbenzene moiety. This process involves two steps: the preparation of a dinitro precursor and the reduction of the dinitro compound to form the diamine. This diamine was then reacted with various dianhydrides, diacidchlorides, and epoxy resins to yield the corresponding polyimide, polyamide, and epoxy polymers. These polymers were then used to make films, a wire coating enamel, and a semi-permeable membrane. The novelty of this invention resides in the process to make the diamine. Traditionally, dinitro compounds are reduced with hydrazine or a catalyst such as palladium on charcoal. The catalyst which is used in this invention is platinum oxide. When this catalyst is used, it makes it possible to form a polymer-grade diamine

    Isomeric oxydiphthalic anhydride polyimides

    Get PDF
    Much of the polyimide research at Langley Research Center has focused on isomeric modification of the diamine component; polyimides having considerably improved processability and adhesion have resulted. The present structure-property study was designed to investigate how isomeric attachment of the three oxydiphthalic anhydride (ODPA) polyimides affects their properties. Each dianhydride, 3,4,3',4'-oxydiphthalic anhydride (4,4'-OPDA,I), 2,3,2',3'-oxydiphthalic anhydride (3,3'-ODPA,II), and 2,3,3',4'-oxydiphthalic anhydride (3,4'-OPDA,III), was reacted with p-phenylenediamine, 4,4'-oxydianiline, 3,3'-diaminodiphenylsulfone, 3,3'-diaminobenzophenone, and 4,4'-bis(3-aminophenoxy)benzophenone in DMAc. The inherent viscosities of the resulting poly(amic acids) were determined. Thermally imidized films were studied for their creasability and solubility, as well as by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and wide angle X-ray scattering (WAXS). A comparison of these properties will be made

    Coupled Enzyme Activity and Thermal Shift Screening of the Maybridge Rule of 3 Fragment Library Against Trypanosoma brucei Choline Kinase; A Genetically Validated Drug Target

    Get PDF
    In this study we interrogate 630 compounds of the Maybridge Rule of 3 Fragment Library for compounds that interact with, and inhibit TbCK. The Maybridge Rule of 3 Fragment Library is a small collection of quantifiable diverse, pharmacophoric rich, chemical entities that comply with the following criteria; MW ≤ 300, cLogP ≤ 3, H-Bond Acceptors ≤ 3, H-Bond Donors ≤ 3, Rotatable bonds (Flexibility Index) ≤ 3, Polar Surface Area ≤ 60 Å2 and aqueous solubility ≥ 1 mM using LogS and high purity (≥ 95%). Comparisons between two different screening methods, a coupled enzyme activity assay and differential scanning fluorimetry, has allowed identification of compounds that interact and inhibit the T. brucei choline kinase, several of which possess selective trypanocidal activity. Screening of a comparatively small fragment library by two different screening methods has allowed identification of several compounds that interact with and inhibit TbCK, a genetically validated drug target against African sleeping sickness. Some of the inhibitory fragments were also selectively trypanocidal, considering these are relatively simple molecules with no optimization, finding low μΜ inhibitors is very encouraging. Moreover some of the morphological phenotypes of these trypanocidal compounds include cell-cycle arrests similar to those observed for the TbCK conditional knockout grown under permissive conditions
    • …
    corecore